算法与数据结构-复杂度分析(上)

news2024/11/25 21:18:19

文章目录

  • 什么是大 O 复杂度表示法
  • 为什么要用大 O 复杂度表示法
  • 如何分析一段代码的时间复杂度
    • 1、只关注循环执行次数最多的一段代码
    • 2、加法法则:总复杂度等于量级最大的那段代码的复杂度
    • 3、乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
  • 几种常见时间复杂度实例分析
    • O(1)
    • O(logn)、O(nlogn)
    • O(m+n)、O(m*n)
  • 空间复杂度分析


什么是大 O 复杂度表示法

  算法的执行效率,粗略地讲,就是算法代码执行的时间。但是,如何在不运行代码的情况下,用“肉眼”得到一段代码的执行时间呢?

  这里有段非常简单的代码,求 1,2,3…n 的累加和。现在,我就带你一块来估算一下这段代码的执行时间。

 int cal(int n) {
   int sum = 0;
   int i = 1;
   for (; i <= n; ++i) {
     sum = sum + i;
   }
   return sum;
 }

  从 CPU 的角度来看,这段代码的每一行都执行着类似的操作:读数据-运算-写数据。尽管每行代码对应的 CPU 执行的个数、执行的时间都不一样,但是,我们这里只是粗略估计,所以可以假设每行代码执行的时间都一样,为 unit_time。在这个假设的基础之上,这段代码的总执行时间是多少呢?

  第 2、3 行代码分别需要 1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,所以需要 2n*unit_time 的执行时间,所以这段代码总的执行时间就是 (2n+2)*unit_time。可以看出来,所有代码的执行时间 T(n) 与每行代码的执行次数成正比。

  按照这个分析思路,我们再来看这段代码。

 int cal(int n) {
   int sum = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1;
     for (; j <= n; ++j) {
       sum = sum +  i * j;
     }
   }
 }

  我们依旧假设每个语句的执行时间是 unit_time。那这段代码的总执行时间 T(n) 是多少呢?

  第 2、3、4 行代码,每行都需要 1 个 unit_time 的执行时间,第 5、6 行代码循环执行了 n 遍,需要 2n * unit_time 的执行时间,第 7、8 行代码循环执行了 n2遍,所以需要 2n² * unit_time 的执行时间。所以,整段代码总的执行时间 T(n) = (2n²+2n+3)*unit_time。

  尽管我们不知道 unit_time 的具体值,但是通过这两段代码执行时间的推导过程,我们可以得到一个非常重要的规律,那就是,所有代码的执行时间 T(n) 与每行代码的执行次数 f(n) 成正比。

  我们可以把这个规律总结成一个公式。注意,大 O 就要登场了!
在这里插入图片描述
  我来具体解释一下这个公式。其中,T(n) 我们已经讲过了,它表示代码执行的时间;n 表示数据规模的大小;f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n) 来表示。公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。

  所以,第一个例子中的 T(n) = O(2n+2),第二个例子中的 T(n) = O(2n²+2n+3)。这就是大 O 时间复杂度表示法。大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。

  当 n 很大时,你可以把它想象成 10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大 O 表示法表示刚讲的那两段代码的时间复杂度,就可以记为:T(n) = O(n); T(n) = O(n²)。


为什么要用大 O 复杂度表示法

  那么这个大 O 复杂度表示法与通过统计、监控得到算法执行的时间和占用的内存大小有什么区别?为什么还要做时间、空间复杂度分析呢?这种分析方法能比我实实在在跑一遍得到的数据更准确吗?

  首先,我可以肯定地说,你这种评估算法执行效率的方法是正确的。很多数据结构和算法书籍还给这种方法起了一个名字,叫事后统计法。

  但是,这种统计方法有非常大的局限性。

    1. 测试结果非常依赖测试环境
      测试环境中硬件的不同会对测试结果有很大的影响。比如,我们拿同样一段代码,分别用 Intel Core i9 处理器和 Intel Core i3 处理器来运行,不用说,i9 处理器要比 i3 处理器执行的速度快很多。还有,比如原本在这台机器上 a 代码执行的速度比 b 代码要快,等我们换到另一台机器上时,可能会有截然相反的结果。
    1. 测试结果受数据规模的影响很大
      后面我们会讲排序算法,我们先拿它举个例子。对同一个排序算法,待排序数据的有序度不一样,排序的执行时间就会有很大的差别。极端情况下,如果数据已经是有序的,那排序算法不需要做任何操作,执行时间就会非常短。

  除此之外,如果测试数据规模太小,测试结果可能无法真实地反映算法的性能。比如,对于小规模的数据排序,插入排序可能反倒会比快速排序要快! 所以,我们需要一个不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法,这个方法就是大 O 复杂度表示法。


如何分析一段代码的时间复杂度

1、只关注循环执行次数最多的一段代码

  大 O 这种复杂度表示方法只是表示一种变化趋势。我们通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以,我们在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了。这段核心代码执行次数的 n 的量级,就是整段要分析代码的时间复杂度。

  为了便于你理解,我还是拿前面的例子来说明。

 int cal(int n) {
   int sum = 0;
   int i = 1;
   for (; i <= n; ++i) {
     sum = sum + i;
   }
   return sum;
 }

  其中第 2、3 行代码都是常量级的执行时间,与 n 的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第 4、5 行代码,所以这块代码要重点分析。前面我们也讲过,这两行代码被执行了 n 次,所以总的时间复杂度就是 O(n)。

2、加法法则:总复杂度等于量级最大的那段代码的复杂度

  我这里还有一段代码。你可以先试着分析一下,然后再往下看跟我的分析思路是否一样。

int cal(int n) {
   int sum_1 = 0;
   int p = 1;
   for (; p < 100; ++p) {
     sum_1 = sum_1 + p;
   }

   int sum_2 = 0;
   int q = 1;
   for (; q < n; ++q) {
     sum_2 = sum_2 + q;
   }
 
   int sum_3 = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1; 
     for (; j <= n; ++j) {
       sum_3 = sum_3 +  i * j;
     }
   }
 
   return sum_1 + sum_2 + sum_3;
 }

  这个代码分为三部分,分别是求 sum_1、sum_2、sum_3。我们可以分别分析每一部分的时间复杂度,然后把它们放到一块儿,再取一个量级最大的作为整段代码的复杂度。

  第一段的时间复杂度是多少呢?这段代码循环执行了 100 次,所以是一个常量的执行时间,跟 n 的规模无关。

  这里我要再强调一下,即便这段代码循环 10000 次、100000 次,只要是一个已知的数,跟 n 无关,照样也是常量级的执行时间。当 n 无限大的时候,就可以忽略。尽管对代码的执行时间会有很大影响,但是回到时间复杂度的概念来说,它表示的是一个算法执行效率与数据规模增长的变化趋势,所以不管常量的执行时间多大,我们都可以忽略掉。因为它本身对增长趋势并没有影响。

  那第二段代码和第三段代码的时间复杂度是多少呢?答案是 O(n) 和 O(n²),你应该能容易就分析出来,我就不啰嗦了。

  综合这三段代码的时间复杂度,我们取其中最大的量级。所以,整段代码的时间复杂度就为 O(n²)。也就是说:总的时间复杂度就等于量级最大的那段代码的时间复杂度。那我们将这个规律抽象成公式就是:

T1(n)=O(f(n))
T2(n)=O(g(n))
T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n)))

3、乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

  我们这里还是给出一段代码,你先试着分析下时间复杂度,再往下看我给的公式:

int cal(int n) {
   int ret = 0; 
   int i = 1;
   for (; i < n; ++i) {
     ret = ret + f(i);
   } 
 } 
 
 int f(int n) {
  int sum = 0;
  int i = 1;
  for (; i < n; ++i) {
    sum = sum + i;
  } 
  return sum;
 }

  我们单独看 cal() 函数。假设 f() 只是一个普通的操作,那第 4~6 行的时间复杂度就是,T1(n) = O(n)。但 f() 函数本身不是一个简单的操作,它的时间复杂度是 T2(n) = O(n),所以,整个 cal() 函数的时间复杂度就是,T(n) = T1(n) * T2(n) = O(n*n) = O(n²)。
那么我们再抽象下这个公式:

T1(n)=O(f(n))
T2(n)=O(g(n))
T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n)*g(n))

几种常见时间复杂度实例分析

  虽然代码千差万别,但是常见的复杂度量级并不多。我稍微总结了一下,这些复杂度量级几乎涵盖了你今后可以接触的所有代码的复杂度量级。
在这里插入图片描述
  对于刚罗列的复杂度量级,我们可以粗略地分为两类,多项式量级和非多项式量级。其中,非多项式量级只有两个:O(2ⁿ) 和 O(n!)。

  我们把时间复杂度为非多项式量级的算法问题叫作 NP(Non-Deterministic Polynomial,非确定多项式)问题。

  当数据规模 n 越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。
在这里插入图片描述
  因此,关于 NP 时间复杂度我就不展开讲了。我们主要来看几种常见的多项式时间复杂度。

O(1)

  首先你必须明确一个概念,O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便有 3 行,它的时间复杂度也是 O(1),而不是 O(3)。

 int i = 8;
 int j = 6;
 int sum = i + j;

  只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。

O(logn)、O(nlogn)

  对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。我通过一个例子来说明一下。

 i=1;
 while (i <= n)  {
   i = i * 2;
 }

  根据我们前面讲的复杂度分析方法,第三行代码是循环执行次数最多的。所以,我们只要能计算出这行代码被执行了多少次,就能知道整段代码的时间复杂度。

  从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量 i 的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:
在这里插入图片描述
  所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2x=n 求解 x 这个问题我们想高中应该就学过了,我就不多说了。x=log2n,所以,这段代码的时间复杂度就是 O(log2n)。

  实际上,不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)。为什么呢?

  我们知道,对数之间是可以互相转换的,log3n 就等于 log32 * log2n,所以 O(log3n) = O(C * log2n),其中 C=log32 是一个常量。基于我们前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以,O(log2n) 就等于 O(log3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。

  如果你理解了我前面讲的 O(logn),那 O(nlogn) 就很容易理解了。还记得我们刚讲的乘法法则吗?如果一段代码的时间复杂度是 O(logn),我们循环执行 n 遍,时间复杂度就是 O(nlogn) 了。而且,O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)。

O(m+n)、O(m*n)

  我们再来讲一种跟前面都不一样的时间复杂度,代码的复杂度由两个数据的规模来决定。老规矩,先看代码!

int cal(int m, int n) {
  int sum_1 = 0;
  int i = 1;
  for (; i < m; ++i) {
    sum_1 = sum_1 + i;
  }

  int sum_2 = 0;
  int j = 1;
  for (; j < n; ++j) {
    sum_2 = sum_2 + j;
  }

  return sum_1 + sum_2;
}

  从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。

  针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。


空间复杂度分析

  前面,咱们花了很长时间讲大 O 表示法和时间复杂度分析,理解了前面讲的内容,空间复杂度分析方法学起来就非常简单了。

  前面我讲过,时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。类比一下,空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系。

  我还是拿具体的例子来给你说明。(这段代码有点“傻”,一般没人会这么写,我这么写只是为了方便给你解释。)

void print(int n) {
  int i = 0;
  int[] a = new int[n];
  for (i; i <n; ++i) {
    a[i] = i * i;
  }

  for (i = n-1; i >= 0; --i) {
    print out a[i]
  }
}

  跟时间复杂度分析一样,我们可以看到,第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。

  我们常见的空间复杂度就是 O(1)、O(n)、O(n2 ),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。所以,对于空间复杂度,掌握刚我说的这些内容已经足够了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/584649.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Unity老动画系统Animation

1、创建老动画系统 给要制作动画的GameObeject添加Animation组件 2、Animation参数 Animation&#xff1a;默认播放的动画 Animations&#xff1a;该动画组件可以控制的所有动画 Play AutoMatically&#xff1a;是否一开始就自动播放默认动画 Animate Physics&#xff1a;动画…

【JavaSE】Java基础语法(三十二):Stream流

文章目录 1. 体验Stream流2. Stream流的常见生成方式3. Stream流中间操作方法【应用】4. Stream流终结操作方法【应用】5. Stream流的收集操作 1. 体验Stream流 案例需求 按照下面的要求完成集合的创建和遍历 创建一个集合&#xff0c;存储多个字符串元素把集合中所有以"…

Python文件打包成exe文件

文章目录 背景安装pyinstaller开始打包总结 背景 今天因为在线将pdf转为word被收费了&#xff0c;有点不爽&#xff0c;所以自己动手撸一个pdf转word的小工具&#xff0c;想着打包成exe给朋友使用&#xff0c;万一哪天会用到呢&#xff1f; 安装pyinstaller 打开cmd命令窗口…

【AGC】云监控日志服务查询不到Logger日志相关问题

【关键字】 AGC、云监控、日志服务 【问题描述】 开发者反馈在使用AGC云监控&#xff0c;填写了Logger日志&#xff0c;但是在云监控的日志服务查不到的问题。具体如下所述&#xff1a; 云函数按要求写了Logger日志&#xff0c;但是在云监控的日志服务页面查询不到&#xff…

R语言混合效应(多水平/层次/嵌套)模型及 贝叶斯实现技术

回归分析是科学研究中十分重要的数据分析工具。随着现代统计技术发展&#xff0c;回归分析方法得到了极大改进。混合效应模型&#xff08;Mixed effect model&#xff09;&#xff0c;即多水平模型&#xff08;Multilevel model&#xff09;/分层模型(Hierarchical Model)/嵌套…

【计算思维题】少儿编程 蓝桥杯青少组计算思维 数学逻辑思维真题详细解析第7套

少儿编程 蓝桥杯青少组计算思维 数学逻辑思维真题详细解析第7套 1、下图中,乐乐家的位置用数对(4,3)表示,学校在乐乐家西南方向。下列选项中,学校的位置不可能是 A、(5,4) B、(2,2) C、(2,1) D、(1,2) 答案:A 考点分析:主要考查小朋友们的观察能力和方…

springboot聚合项目程打包,提示包不存在

报错提示如下&#xff0c;这是子模块large_screen调用login_security模块时&#xff0c;找不到login_security的包&#xff0c;但是login_security能单独打包成功 项目结构&#xff0c;两个子模块可以启动 解决办法&#xff1a; 父pom,要用 <packaging>pom</packag…

基础sql代码讲解含运行截图(详细版)

用student表为例&#xff0c;表的结构如下&#xff1a; 查询student表中的全部数据 SELECT * FROM student 插入数据&#xff1a; INSERT INTO student (id,name,phone,age) VALUES (2,张,1123,19) 还可以不写字段名字进行插入&#xff0c;但是此种方式必须和数据库字段一一…

3:String类

文章目录 String类1&#xff1a;介绍&#xff1a;2&#xff1a;String类实现了很多的接口&#xff1a;3&#xff1b;String类常用构造器4&#xff1a;不同方式创建String类对象的区别&#xff08;1&#xff09;直接赋值的方式&#xff08;2&#xff09;常规new的方式&#xff0…

租赁行业提供固定资产管理的解决方案

在租赁行业&#xff0c;固定资产管理和盘点是非常重要的环节。然而&#xff0c;由于资产数量庞大、资产分散、资产更新频繁等因素&#xff0c;使得固定资产管理和盘点变得十分复杂和繁琐。为了解决这些问题&#xff0c;易点易动固定资产管理系统应运而生。 易点易动固定资产管…

vulnhub 靶机渗透:Stapler

Stapler nmap扫描21 端口22 53端口80端口目录爆破 139端口666 端口3306端口12380端口获取数据库root权限获取系统立足点提权 其他思路系统立足点1系统立足点2提权1提权2 https://www.vulnhub.com/entry/stapler-1,150/ 靶机ip:192.168.54.27 kali ip:192.168.54.128 nmap扫描 …

【剑指offer】数据结构——树

目录 数据结构——树直接解【剑指offer】07. 重建二叉树【剑指offer】08. 二叉树的下一个结点【剑指offer】26. 树的子结构【剑指offer】27. 二叉树的镜像【剑指offer】28. 对称的二叉树【剑指offer】32.1 从上到下打印二叉树【剑指offer】32.2 从上到下打印二叉树2【剑指offer…

考研C语言第六章

6.2指针 类似寻宝图&#xff0c;先把地址存储到指针变量里面&#xff0c;然后去找这个地址 指针大小 当64bit——8bit 当32bit——4bit 定义指针一定要和里面的数定义一样类型的 6.3指针的传递使用场景 指针的使用场景&#xff1a;传递和偏移 &#xff08;不需要的话就别用指…

opencv_c++学习(二十八)

一、单目相机位姿估计 如上图所示&#xff0c;根据图像的情况反推相机的运动情况。 如实现上述功能则需要拍摄当前物体的图像&#xff0c;然后拍摄一段时间之后物体的图像&#xff0c;然后联合两张图像则可以获取两个时刻的相机位姿关系。 位姿估计函数&#xff1a; bool cv:s…

Musl libc 库成功适配到 openEuler Embedded,推动欧拉嵌入式生态发展

近期&#xff0c;RISC-V SIG 在欧拉嵌入式操作系统上成功实现了 musl libc 的适配&#xff0c;完成了使用 musl libc 库替换 glibc 库构建镜像的工作。目前&#xff0c;以 musl libc 为基础库编译的镜像已在 Raspberry Pi4 开发板上可用&#xff0c;这一成果推动了 openEuler E…

C Primer Plus第十一章编程练习答案

学完C语言之后&#xff0c;我就去阅读《C Primer Plus》这本经典的C语言书籍&#xff0c;对每一章的编程练习题都做了相关的解答&#xff0c;仅仅代表着我个人的解答思路&#xff0c;如有错误&#xff0c;请各位大佬帮忙点出&#xff01; 1.设计并测试一个函数&#xff0c;从输…

《Opencv3编程入门》学习笔记—第二章

《Opencv3编程入门》学习笔记 记录一下在学习《Opencv3编程入门》这本书时遇到的问题或重要的知识点。 第二章 OpenCV 官方例程引导与赏析 openv官方提供的示例程序&#xff1a;具体位于..\opencv\sources\samples\cpp ..\opencv\sources\samples\cpp\tutorial_code路径下存…

sql优化常用的方法

文章目录 1、explain 输出执行计划2、in 和 not in 要慎用3、少用select *4、善用limit 15、 order by字段建索引6、count(*)推荐使用7、where 子句中避免is null /is not null8、应尽量避免在 where!或<>9、应尽量避免在 where 子句中使用 or10、尽量用union all代替uni…

了不起的互联网老男孩,在创业路上不掉队

“青春如同奔流的江河&#xff0c;一去不回来不及道别”&#xff0c;老男孩这首歌戳中了太多职场中年男人的心酸苦楚&#xff0c;面对经济下行压力、互联网行业变革以及中年职场危机&#xff0c;互联网人应该如何应对&#xff1f;如何建立和现实叫板的能力&#xff1f; 有2位在…

shiro入门实战

​​​​​​​Apache Shiro | Simple. Java. Security. java语言编写 架构 shiro认证流程 使用 添加shiro依赖 <dependency><groupId>org.apache.shiro</groupId><artifactId>shiro-core</artifactId><version>1.4.0</version>&l…