目录
专题一 Meta分析的选题与文献计量分析CiteSpace应用
专题二 Meta分析与R语言数据清洗及相关应用
专题三 R语言Meta分析与精美作图
专题四 R语言Meta回归分析
专题五 R语言Meta诊断分析与进阶
专题六 R语言Meta分析的不确定性及贝叶斯应用
专题七 深度拓展机器学习在Meta分析中的应用
更多模型
Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。R语言拥有完整有效的数据处理、统计分析与保存机制,可以对数据直接进行分析和显示,命令格式简单、结果可读性强,包含众多针对Meta分析软件包,是进行Meta整合分析及评价的有效平台。本教程针对Meta分析原理、公式、操作步骤及结果分析,进阶应用进行详细解析,结合多个例子,熟练掌握Meta分析全流程和不确定性分析,并结合机器学习等方法讲解Meta分析在文献大数据的延伸应用。
专题一 Meta分析的选题与文献计量分析CiteSpace应用
1)什么是Meta分析
2)Meta分析的选题策略
3)文献检索数据库
4)精确检索策略,如何检索全、检索准
5)文献的管理与清洗,如何制定文献纳入排除标准
6)文献数据获取技巧
7)文献计量分析CiteSpace及研究热点分析
专题二 Meta分析与R语言数据清洗及相关应用
1)R语言做Meta分析的优势及其《Nature》、《Science》经典案例应用
2)R语言基本操作
3)R语言数据清洗方法
4)R语言Meta分析常用包及相关插件讲解与实践
从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图。
专题三 R语言Meta分析与精美作图
1)R语言Meta分析的流程
2)各类meta效应值和累计效应值计算
连续资料的RR、MD与SMD
分类资料的RR和OR
3)Meta亚组分析
4)R语言图形可视化方法
5)如何用ggplot2绘制漂亮的森林图
专题四 R语言Meta回归分析
1)Meta回归统计分析理论及应用
2)Meta回归和普通回归分析的异同
3)固定效应与随机效应分析
4)泡泡图(bubble)的绘制
专题五 R语言Meta诊断分析与进阶
1)Meta诊断分析(t2、I2、H2、Q等统计量)
2)异质性检验
3)敏感性分析
4)偏倚分析
5)风险分析
专题六 R语言Meta分析的不确定性及贝叶斯应用
1)网状Meta分析
2)贝叶斯理论
3)R语言贝叶斯工具Stan、JAGS和brms
4)贝叶斯Meta分析及不确定性分析
专题七 深度拓展机器学习在Meta分析中的应用
5)机器学习基础以及Meta机器学习的优势
6)Meta加权随机森林(MetaForest)的使用
7)使用Meta机器学习对文献中的大数据进行整合
8)使用机器学习进行驱动因子分析
更多模型
●基于R语言的Copula变量相关性分析及应用
●基于R语言结构方程模型分析与实践技术应用
●R语言结构方程模型(SEM)在生态学领域中的实践应用
●基于R语言的分位数回归实践技术高级应用
●R语言地理空间分析、可视化及模型预测实践
●基于R语言的Meta分析【全流程、不确定性分析】方法与Meta机器学习高级应用
●基于R语言的贝叶斯网络模型的实践技术应用
●基于R语言贝叶斯进阶:INLA下的贝叶斯回归\生存分析\随机游走、广义可加模型\极端数据的贝叶斯分析
●基于R语言的现代贝叶斯统计学方法(贝叶斯参数估计、贝叶斯回归、贝叶斯计算)实践技术
●基于Citespace和vosviewer的文献信息可视化分析技术
●基于R语言地理加权回归、主成分分析、判别分析等空间异质性数据分析
●R语言回归及混合效应(多水平/层次/嵌套)模型应用及贝叶斯实现
●R语言数据统计分析与ggplot2高级绘图实践应用