💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
目前,我国较为先进的供热系统对二级管网进行平衡调节,并通过安装在散热器上的手动调节阀、温控阀调节水流量,从而改变室温。但供暖期间大多数用户不能合理、及时调节温控装置,导致部分建筑室温分布不均甚至出现开窗散热的现象,供暖能耗浪费严重。因此,通过采用室温控制技术维持室温稳定,可保证房间的热舒适性,减少开窗散热等无效热损失,从而实现高效费比节能。
这个项目为一栋建筑的供暖系统实现了MPC控制器。本文设计了一个MPC控制器,以最大限度地降低运行的总成本,同时考虑到天气的预测,并研究了额外储热的影响。
本项目需要多次模拟(3次以内)。可以减少问题的范围(但在合理的范围内)或采样时间。大多数情况下,计算器的性能比较重要。
📚2 运行结果
主函数部分代码:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% MPC -- Mini Project %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clc; close all; yalmip('clear'); clear all; %% Model data load building.mat; load battery.mat; % Parameters of the Building ModelA = ssM.A; Bu = ssM.Bu; Bd = ssM.Bd; C = ssM.C; Ts = ssM.timestep; % Parameters of the Storage Model a = ssModel.A; b = ssModel.Bu; % Installation Test yalmip('version') sprintf('The Project files are successfully installed') % Other parameters nx = length(A); %number of states ny = size(C,1); %number of outputs nu = size(Bu,2); %number of inputs nd = size(Bd,2); %number of disturbances umax = 15*ones(nu,1); umin = 0*ones(nu,1); %input constraints ymax = 26*ones(ny,1); ymin = 22*ones(ny,1); %output constraints vmax = 20; vmin = -20; xbmax = 20; xbmin = 0; %% Controller Design (Setting-up MPC optimizer) figure, subplot(1,2,1), stairs(refDist(2:3,:)'); % plot two of disturbance inputslegend(ssM.disturbance(2:3)); xlabel('Step-Time: 20min'); ylabel('Disturbances (kW)'); subplot(1,2,2), stairs(refDist(1,:)'); %plot one of disturbance inputs legend(ssM.disturbance(1)); xlabel(' Step- Time: 20 min '); ylabel(' Disturbances (C) '); savefig(' disturbances.fig '); %save figure disp(' Click on Enter to continue with the Section 1 . '); pause; %% Section 1: tracking MPC %define objective parameters param_objective.R = eye(ny); %cost weight param_objective.yref = [24 24 24]' ; %reference outputs %define constraints matrix param_constraints.Mu = [eye(nu); -eye(nu)]; param_constraints.My = [eye(ny); -eye(ny)]; param_constraints.mu = [umax; -umin]; param_constraints.my = [ymax; -ymin]; %Determine the influence of the horizon length on the MPC scheme param_simulation.horizon_lengths = [4, 15, 30, 50, 72, 90]; %arbitrary values of horizon length tuning_horizon_length(ssM, param_constraints, param_objective, param_simulation, refDist); %define simulation parameters param_simulation.N = 72; %prediction horizon chosen - 1 day = 72*20min param_simulation.T = size(refDist,2)-param_simulation.N; %simulation length in time-steps %run tracking MPC with no night-setbacks and no variable cost [xt, yt, ut, t] = trackingMPC(ssM, param_constraints, param_objective, param_simulation); %display total economic cost total_cost = 0.2*sum(ut(:)); sprintf('Total economic cost: $%d', total_cost) disp('Click on Enter to continue with the Section 2.'); pause; %% Section 2: economic MPC and soft constraints % define other objective parametersparam_objective.c = 0.2; %fixed electricity price param_objective.S = 50*eye(ny); %economic cost weight %run economic MPC with no night-setbacks and no variable cost [xt, yt, ut, t, total_cost] = economicMPC_sc(ssM, param_constraints, param_objective, param_simulation); %display total economic cost sprintf('Total economic cost: $%d', total_cost) disp('Click on Enter to continue with the Section 3.'); pause; %% Section 3: economic, soft constraints, and variable cost % run economic MPC with variable cost, but no night-setbacks[xt, yt, ut, t, total_cost] = economicMPC_sc_vc(ssM, param_constraints, param_objective, param_simulation); %display total economic cost sprintf('Total economic cost: $%d', total_cost) disp('Click on Enter to continue with the Section 4.'); pause; %% Section 4 : Night setbacks % run economic MPC with variable cost and night-setbacks[xt, yt, ut, t, total_cost] = economicMPC_sc_vc_sb(ssM, param_constraints, param_objective, param_simulation); %display total economic cost sprintf('Total economic cost: $%d', total_cost) disp('Click on Enter to continue with the Section 5.'); pause;
🎉3 参考文献
[1]张冬冬,王淳,代伟,罗策恒,刘梓宁,武新章.居民区多能源管理模型与优化调度策略分析[J/OL].电力系统及其自动化学报:1-13[2023-05-27].
部分理论引用网络文献,若有侵权联系博主删除。