STM32之SPI和W25Q128

news2025/1/23 8:11:14

目录

SPI 介绍

SPI 物理架构

SPI 工作原理

SPI 工作模式

 W25Q128 介绍

W25Q128 存储架构

W25Q128 常用指令

W25Q128 状态寄存器

W25Q128 常见操作流程

实验:使用 SPI 通讯读写 W25Q128 模块 

硬件接线

cubeMX配置

w25q128_write_nocheck流程图 

代码:


SPI 介绍

SPI 是什么?
SPI 是串行外设接口( Serial Peripheral Interface )的缩写,是一种高速的,全双工,同步的通信总
线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为 PCB 的布局上节省空间,提
供方便,正是出于这种简单易用的特性,越来越多的芯片集成了这种通信协议,比如
AT91RM9200

SPI 物理架构

SPI 包含 4 条总线, SPI 总线包含 4 条总线,分别为 SS SCK MOSI MISO 。它们的作用介绍如
下 :
(1) MISO – Master Input Slave Output ,主设备数据输入,从设备数据输出 (2) MOSI – Master
Output Slave Input ,主设备数据输出,从设备数据输入 (3) SCK – Serial Clock ,时钟信号,由主
设备产生 (4) CS – Chip Select ,片选信号,由主设备控制

SPI 工作原理

SPI 工作模式

时钟极性( CPOL
没有数据传输时时钟线的空闲状态电平 0 SCK 在空闲状态保持低电平 1 SCK 在空闲状态保持高
电平
时钟相位( CPHA
时钟线在第几个时钟边沿采样数据 0 SCK 的第一(奇数)边沿进行数据位采样,数据在第一个时
钟边沿被锁存 1 SCK 的第二(偶数)边沿进行数据位采样,数据在第二个时钟边沿被锁存

 

模式 0 和模式 3 最常用。
模式 0 时序图:
模式 3 时序图:

 W25Q128 介绍

什么是 W25Q128
W25Q128 是华邦公司推出的一款 SPI 接口的 NOR Flash 芯片,其存储空间为 128 Mbit ,相当于
16M 字节。
Flash 是常用的用于储存数据的半导体器件,它具有容量大,可重复擦写、按 扇区 / 擦除、掉
电后数据可继续保存的特性。
Flash 是有一个物理特性:只能写 0 ,不能写 1 ,写 1 靠擦除。

W25Q128 存储架构

一般按扇区( 4k )进行擦除。
可以按 章 -- -- -- 字 进行理解。

W25Q128 常用指令

 W25Q128 全部指令非常多,但常用的如下几个指令:

写使能 (06H)
执行页写,扇区擦除,块擦除,片擦除,写状态寄存器等指令前,需要写使能。
拉低 CS 片选 发送 06H → 拉高 CS 片选
读状态寄存器( 05H
拉低 CS 片选 发送 05H→ 返回 SR1 的值 拉高 CS 片选
读时序( 03H
拉低 CS 片选 发送 03H→ 发送 24 位地址 读取数据( 1~n 拉高 CS 片选
页写时序 (02H)
页写命令最多可以向 FLASH 传输 256 个字节的数据。
拉低 CS 片选 发送 02H→ 发送 24 位地址 发送数据( 1~n 拉高 CS 片选
扇区擦除时序( 20H
写入数据前,检查内存空间是否全部都是 0XFF ,不满足需擦除。
拉低 CS 片选 发送 20H→ 发送 24 位地址 拉高 CS 片选

W25Q128 状态寄存器

W25Q128 一共有 3 个状态寄存器,它们的作用是跟踪芯片的状态。
其中,状态寄存器 1 较为常用

BUSY :指示当前的状态, 0 表示空闲, 1 表示忙碌 WEL :写使能锁定,为 1 时,可以操作页 /
/ 块。为 0 时,写禁止。

W25Q128 常见操作流程

以下流程省略了拉低/拉高片选信号CS

读操作:

擦除扇区:

写操作

实验:使用 SPI 通讯读写 W25Q128 模块 

硬件接线

VCC -- 3.3V
CS -- PA4
CLK -- PA5
DO -- PA6
DI -- PA7

cubeMX配置

w25q128_write_nocheck流程图 

代码:

spi.h

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    spi.h
  * @brief   This file contains all the function prototypes for
  *          the spi.c file
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __SPI_H__
#define __SPI_H__

#ifdef __cplusplus
extern "C" {
#endif

/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

extern SPI_HandleTypeDef hspi1;

/* USER CODE BEGIN Private defines */

/* USER CODE END Private defines */

void MX_SPI1_Init(void);

/* USER CODE BEGIN Prototypes */
uint8_t spi1_read_write_byte(uint8_t data);
/* USER CODE END Prototypes */

#ifdef __cplusplus
}
#endif

#endif /* __SPI_H__ */

spi.c

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    spi.c
  * @brief   This file provides code for the configuration
  *          of the SPI instances.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "spi.h"

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

SPI_HandleTypeDef hspi1;

/* SPI1 init function */
void MX_SPI1_Init(void)
{

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  /* USER CODE BEGIN SPI1_Init 1 */

  /* USER CODE END SPI1_Init 1 */
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI1_Init 2 */

  /* USER CODE END SPI1_Init 2 */

}

void HAL_SPI_MspInit(SPI_HandleTypeDef* spiHandle)
{

  GPIO_InitTypeDef GPIO_InitStruct = {0};
  if(spiHandle->Instance==SPI1)
  {
  /* USER CODE BEGIN SPI1_MspInit 0 */

  /* USER CODE END SPI1_MspInit 0 */
    /* SPI1 clock enable */
    __HAL_RCC_SPI1_CLK_ENABLE();

    __HAL_RCC_GPIOA_CLK_ENABLE();
    /**SPI1 GPIO Configuration
    PA5     ------> SPI1_SCK
    PA6     ------> SPI1_MISO
    PA7     ------> SPI1_MOSI
    */
    GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_7;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

    GPIO_InitStruct.Pin = GPIO_PIN_6;
    GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /* USER CODE BEGIN SPI1_MspInit 1 */

  /* USER CODE END SPI1_MspInit 1 */
  }
}

void HAL_SPI_MspDeInit(SPI_HandleTypeDef* spiHandle)
{

  if(spiHandle->Instance==SPI1)
  {
  /* USER CODE BEGIN SPI1_MspDeInit 0 */

  /* USER CODE END SPI1_MspDeInit 0 */
    /* Peripheral clock disable */
    __HAL_RCC_SPI1_CLK_DISABLE();

    /**SPI1 GPIO Configuration
    PA5     ------> SPI1_SCK
    PA6     ------> SPI1_MISO
    PA7     ------> SPI1_MOSI
    */
    HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7);

  /* USER CODE BEGIN SPI1_MspDeInit 1 */

  /* USER CODE END SPI1_MspDeInit 1 */
  }
}

/* USER CODE BEGIN 1 */
uint8_t spi1_read_write_byte(uint8_t data)
{
    uint8_t rec_data = 0;
    
    HAL_SPI_TransmitReceive(&hspi1, &data, &rec_data, 1, 1000);
    
    return rec_data;
}
/* USER CODE END 1 */

main.c

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "spi.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#include "string.h"
#include "w25q128.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
#define TEXT_SIZE 16
#define  FLASH_WriteAddress     0x00000
#define  FLASH_ReadAddress      FLASH_WriteAddress
/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
	uint8_t datatemp[TEXT_SIZE];
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_SPI1_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
	w25q128_init();
	
	/* 写入测试数据 */
	sprintf((char *)datatemp, "liangxu shuai");
	w25q128_write(datatemp, FLASH_WriteAddress, TEXT_SIZE);
	printf("数据写入完成!\r\n");
	
	/* 读出测试数据 */
	memset(datatemp, 0, TEXT_SIZE);
	w25q128_read(datatemp, FLASH_ReadAddress, TEXT_SIZE);
	printf("读出数据:%s\r\n", datatemp);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/579771.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何在华为OD机试中获得满分?Java实现【最长回文子串】一文详解!

✅创作者:陈书予 🎉个人主页:陈书予的个人主页 🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区 🌟专栏地址: Java华为OD机试真题(2022&2023) 文章目录 1. 题目描述2. 输入描述3. 输出描述…

网络原理(八):HTTPS

目录 HTTP 基本工作流程 利用对称密钥进行加密 利用非对称密钥进行加密 引入了第三方权威机构加密 之前在http 协议中说到:我们现在很少有网站直接使用HTTP 协议的,而是使用HTTPS ,至于什么原因,本篇会介绍清楚。 HTTPS 其实…

C++11 -- lambda表达式

文章目录 lamaba表达式的引入lambda表达式语法lamabda达式各部分说明捕获列表说明 lamaba表达式底层原理探索 lamaba表达式的引入 在C11之前,如果我们想对自定义类型Goods排序,可以根据姓名,价格,学号按照从大到小或者从小到大的方式排序,可是,这样我们要写额外写6个相关的仿函…

以太坊学习三: Merkle树和验证

Merkle tree简介 Merkle树又称为哈希树,是一种二叉树,由一个根节点、若干中间节点和一组叶节点组成。最底层的叶节点存储数据,在它之上的一层节点为它们对应的Hash值,中间节点是它下面两个子节点的Hash值,根节点是最后…

DAY 66 数据库缓存服务——NoSQL之Redis配置与优化

缓存概念 缓存是为了调节速度不一致的两个或多个不同的物质的速度,在中间对速度较慢的一方起到加速作用,比如CPU的一级、二级缓存是保存了CPU最近经常访问的数据,内存是保存CPU经常访问硬盘的数据,而且硬盘也有大小不一的缓存&am…

爆肝整理,最全单元测试-测试用例总结(全覆盖)及拿即用...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 Python自动化测试&…

Maven私服仓库配置-Nexus详解

目录 一、什么是Maven私服?二、Maven 私服优势三、Maven 私服搭建四、Sonatype Nexus介绍五、Nexus仓库属性和分类六、Nexus仓库配置以及创建仓库七、Nexus配置用户角色八、Maven SNAPSHOT(快照)九、项目当中配置Nexus上传依赖十、项目当中配置Nexus下载依赖十一、测…

人工智能基础部分20-生成对抗网络(GAN)的实现应用

大家好,我是微学AI,今天给大家介绍一下人工智能基础部分20-生成对抗网络(GAN)的实现应用。生成对抗网络是一种由深度学习模型构成的神经网络系统,由一个生成器和一个判别器相互博弈来提升模型的能力。本文将从以下几个方面进行阐述&#xff1…

flutter_学习记录_03_通过事件打开侧边栏

实现类似这样的侧边栏的效果&#xff1a; 可以用Drawer来实现。 1. 在Scaffold组件下设置endDrawer属性 代码如下&#xff1a; import package:flutter/material.dart;class ProductListPage extends StatefulWidget {ProductListPage( {super.key}) ;overrideState<Pro…

首发Yolov8优化:Adam该换了!斯坦福最新Sophia优化器,比Adam快2倍 | 2023.5月斯坦福最新成果

1.Sophia优化器介绍 斯坦福2023.5月发表的最新研究成果,他们提出了「一种叫Sophia的优化器,相比Adam,它在LLM上能够快2倍,可以大幅降低训练成本」。 论文:https://arxiv.org/pdf/2305.14342.pdf 本文介绍了一种新的模型预训练优化器:Sophia(Second-order Clippe…

低资源方面级情感分析研究综述

文章目录 前言1. 引言2. 问题定义、数据集和评价指标2.1 问题定义2.2 任务定义2.3 常用数据集 3. 方面级情感分析的方法3.1 **方面词抽取**3.1.1 基于无监督学习的方法3.1.1.1 基于规则的方面词抽取3.1.1.2 基于统计的方面词抽取 3.1.2 基于有监督浅层模型的方法3.1.3 基于有监…

【C++初阶】类和对象(下)之友元 + 内部类 + 匿名对象

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前学习C和算法 ✈️专栏&#xff1a;C航路 &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章对你有帮助的话 欢迎 评论&#x1f4ac; 点赞&#x1…

一台服务器通过nginx安装多个web应用

1.首先安装nginx网站服务器 yum install nginx 2.nginx 的主配置文件&#xff1a;/etc/nginx/nginx.conf (一台服务器有两个域名部署) 我们在/etc/nginx/nginx.d/下创建一个conf文件&#xff0c;这个文件会被嵌套到主配置文件当中 server { listen 80; …

《数据库应用系统实践》------ 个人作品管理系统

系列文章 《数据库应用系统实践》------ 个人作品管理系统 文章目录 系列文章一、需求分析1、系统背景2、 系统功能结构&#xff08;需包含功能结构框图和模块说明&#xff09;3&#xff0e;系统功能简介 二、概念模型设计1&#xff0e;基本要素&#xff08;符号介绍说明&…

Netty客户端与服务器端闲暇检测与心跳检测(三)

网络应用程序中普遍存在一个问题&#xff1a;连接假死&#xff0c;连接假死现象是:在某一端(服务器端|客户端)看来,底层的TCP连接已经断开,但是应用程序没有捕获到,因此会认为这个连接还存在。从TCP层面来说,只有收到四次握手数据包,或者一个RST数据包,才表示连接状态已断开; 连…

Spring练习二ssm框架整合应用

导入教程的项目&#xff0c;通过查看源码对aop面向切面编程进行理解分析 aop面向编程就像是我们给程序某些位置丢下锚点&#xff08;切入点&#xff09;以及当走到锚点时需要调用的方法&#xff08;切面&#xff09;。在程序运行的过程中&#xff0c; 一旦到达锚点&#xff0c;…

f-stack的源码编译安装

DPDK虽然能提供高性能的报文转发&#xff08;安装使用方法见DPDK的源码编译安装&#xff09;&#xff0c;但是它并没有提供对应的IP/TCP协议栈&#xff0c;所以在网络产品的某些功能场景下&#xff08;特别是涉及到需要使用TCP协议栈的情况&#xff09;&#xff0c;比如BGP邻居…

Ansible原理简介与安装篇

工作原理 1、在Ansible管理体系中&#xff0c;存在“管理节点”和“被管理节点” 2、被管理节点通常被称为”资产“ 3、在管理节点上&#xff0c;Ansible将AdHoc或PlayBook转换为python脚本。并通过SSH将这些python脚本传递到被管理服务器上。在被管理服务器上依次执行&#xf…

遥感云大数据在灾害、水体与湿地领域及GPT模型应用

近年来遥感技术得到了突飞猛进的发展&#xff0c;航天、航空、临近空间等多遥感平台不断增加&#xff0c;数据的空间、时间、光谱分辨率不断提高&#xff0c;数据量猛增&#xff0c;遥感数据已经越来越具有大数据特征。遥感大数据的出现为相关研究提供了前所未有的机遇&#xf…

基础篇010.2 STM32驱动RC522 RFID模块之二:STM32硬件SPI驱动RC522

目录 基础篇010.1 STM32驱动RC522 RFID模块之一&#xff1a;基础知识 1. 实验硬件及原理图 1.1 RFID硬件 1.2 硬件原理图 2. 单片机与RFID硬件模块分析 3. 利用STM32CubeMX创建MDK工程 3.1 STM32CubeMX工程创建 3.2 配置调试方式 3.3 配置时钟电路 3.4 配置时钟 3.5 配…