以太坊学习三: Merkle树和验证

news2024/12/24 2:42:27

Merkle tree简介

   Merkle树又称为哈希树,是一种二叉树,由一个根节点、若干中间节点和一组叶节点组成。最底层的叶节点存储数据,在它之上的一层节点为它们对应的Hash值,中间节点是它下面两个子节点的Hash值,根节点是最后顶层的Hash值,这个一般成为Merkle根。
在这里插入图片描述
  Merkle树的层层Hash计算,任何底层叶节点或者说某个节点的数据变动都会传递到父亲节点,并直达树根。当叶子节点发生数据改变时,如果要比较两个集合的数据是否相同,则只需比较两次数据的树根即可,若底层叶节点数据相同,则树根相同;反之,树根便不相同。因此Merkle树的典型应用场景具体如下:

  • 快速比较大量数据:当两个Merkle树根相同时,则意味着所代表的数据必然相同
  • 快速定位变更:如果上图L1的数据被修改,则hi影响到Hash0-0,Hash0 和Root。因此沿着Root->Hash0->Hash0-0,可以快速定位到发生改变的L1。

MPT 状态树

  Trie树是一种有序的树形结构,也被称为前缀树或者字典树,一般用于保存关联数组,其中的键通常是字符串,键不保存在节点中,而是由节点在树中的位置决定,根节点对应空字符串,键对应的值标注在节点之下。

  Patricia树是一种节省空间的压缩前缀树。相当于Trie树存在的缺点,每个前置节点仅能表示一个字母,不管key和其它key有没有共享内容,key越长,树的深度也就越长。Patricia树的主要改进在于如果存在一个父节点只有一个子节点,那么这个父节点将与其子节点合并,这样可以减少Trie中树的深度,加快搜索节点速度,同时也减少了空间的消耗。

在这里插入图片描述
  MPT是Merkle 和Patricia 结合后的产物,在以太坊中,MPT包含4种不同的节点: 空节点、叶子节点、扩展节点和分支节点。

  • 空节点:无实际内容节点,但占用一个元数据存储。
  • 叶子节点:是一个键值对,其中key是原始内容的一种特殊十六进制编码,value是内容的RLP编码.
  • 扩展节点: 也是一个键值对,但是value是其他节点的Hash值,即指向其他节点的链接
  • 分支节点:由于key被编码成一种特殊的十六进制的表示,还有最后的value,所以分支节点是一个长度为17的列表,前16个元素对应着key中的16个可能的十六进制字符,如果有一个(key,vlaue)键值对在这个分支节点终止,那么最后一个元素代表一个值,即分支节点既可以是所以搜路径的终止也可以是搜索路径的中间节点。分支节点的父节点基本上就是扩展节点。

   十六进制字母表中有16个字符(0…9 A…F),如果某个节点有16个子节点,那么每个子节点对应一个字符占用4位,半个字节,被称为nibble。一个nibble被加到key之前,用到对终止符的状态和奇偶性进行编码。其中,最低位表示奇偶性,**0表示偶数,1表示奇数;**倒数第二位表示终止符状态。如果key是偶数位,则需要加上另外一个nibble。

  MPT树实现图(图片来源:以太坊黄皮书)
在这里插入图片描述
   首先,根节点ROOT实际上是一个扩展节点,该节点进行SHA-3Hash计算后的值就是所谓三个Merkle根之一的stateRoot。这个扩展节点的key为其它实际节点的共有前缀(a7,key)两位字符,需要在前面补充前缀半字节nibble;value指向第一个分支节点,这个分支节点key包含(1,7,f)字符。其中1指向叶子节点,这个叶子节点为1335,偶数位补充前缀,因为是终止节点,nibble是0010=2,value是balance 45.0 ETH。第一个分支节点key中的7指向第二个扩展节点,他的key是后续两个叶子节点的共有前缀d3,偶数位补字符0,value指向第二个分支节点。这个分支节点包含3和9,其中3指向叶子节点1.00WEI,9指向0.12ETH的叶子节点,这两个叶子节点key都只有1位,而且是终止节点,所以补充的nibble前缀0011 =3 。第一个分会节点key还包含f,他指向1.1 ETH的叶子节点,这个叶子节点的key为9365,偶数位而且是终止节点,所以在前面补充前缀nibble0010=2。
   叶子键值对

keysvalues
a71135545.0ETH
a77d3371.00WEI
a7f93651.1ETH
a77d3970.12ETH

   综上所述,以太坊MPT树具有如下特点

  • 叶子节点和分支节点可以保存value,扩展节点保存key
  • 没有公共的key就成为2个叶子节点
  • 如有公共的key则应该提取为一个扩展节点
  • 如果公共的key也是一个完整的key,那么数据应该保存到下一级的分支节点中

以太坊的应用

   在区块结构中包含区块头header,header里面包含3种树根

状态树:stateRoot

   状态树是全局的树
   path = sha3(ethereumAddress): 以太坊账户地址
   value=rlp([nonce,balance,storageRoot,codeHash]):交易次数、账户余额、存储树、合约代码Hash
  其中storageRoot是另一个trie树,用于存储合约中的所有数据,每个账户都有一个独立的storageRoot树

交易树: transactionsRoot

  每个block都有一个交易树。
   path = rlp(transactionIndex): 该交易在block中的索引,顺序由矿工决定
   value=交易记录
  该树生成后永远不会被修改

收据树:receiptsRoot

  每个block都有一个收据树。
   path = rlp(receiptIndex): 该交易在block中生成receipt的索引,顺序由矿工决定
   value=receipt记录
  该树生成后永远不会被修改

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/579765.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DAY 66 数据库缓存服务——NoSQL之Redis配置与优化

缓存概念 缓存是为了调节速度不一致的两个或多个不同的物质的速度,在中间对速度较慢的一方起到加速作用,比如CPU的一级、二级缓存是保存了CPU最近经常访问的数据,内存是保存CPU经常访问硬盘的数据,而且硬盘也有大小不一的缓存&am…

爆肝整理,最全单元测试-测试用例总结(全覆盖)及拿即用...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 Python自动化测试&…

Maven私服仓库配置-Nexus详解

目录 一、什么是Maven私服?二、Maven 私服优势三、Maven 私服搭建四、Sonatype Nexus介绍五、Nexus仓库属性和分类六、Nexus仓库配置以及创建仓库七、Nexus配置用户角色八、Maven SNAPSHOT(快照)九、项目当中配置Nexus上传依赖十、项目当中配置Nexus下载依赖十一、测…

人工智能基础部分20-生成对抗网络(GAN)的实现应用

大家好,我是微学AI,今天给大家介绍一下人工智能基础部分20-生成对抗网络(GAN)的实现应用。生成对抗网络是一种由深度学习模型构成的神经网络系统,由一个生成器和一个判别器相互博弈来提升模型的能力。本文将从以下几个方面进行阐述&#xff1…

flutter_学习记录_03_通过事件打开侧边栏

实现类似这样的侧边栏的效果&#xff1a; 可以用Drawer来实现。 1. 在Scaffold组件下设置endDrawer属性 代码如下&#xff1a; import package:flutter/material.dart;class ProductListPage extends StatefulWidget {ProductListPage( {super.key}) ;overrideState<Pro…

首发Yolov8优化:Adam该换了!斯坦福最新Sophia优化器,比Adam快2倍 | 2023.5月斯坦福最新成果

1.Sophia优化器介绍 斯坦福2023.5月发表的最新研究成果,他们提出了「一种叫Sophia的优化器,相比Adam,它在LLM上能够快2倍,可以大幅降低训练成本」。 论文:https://arxiv.org/pdf/2305.14342.pdf 本文介绍了一种新的模型预训练优化器:Sophia(Second-order Clippe…

低资源方面级情感分析研究综述

文章目录 前言1. 引言2. 问题定义、数据集和评价指标2.1 问题定义2.2 任务定义2.3 常用数据集 3. 方面级情感分析的方法3.1 **方面词抽取**3.1.1 基于无监督学习的方法3.1.1.1 基于规则的方面词抽取3.1.1.2 基于统计的方面词抽取 3.1.2 基于有监督浅层模型的方法3.1.3 基于有监…

【C++初阶】类和对象(下)之友元 + 内部类 + 匿名对象

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前学习C和算法 ✈️专栏&#xff1a;C航路 &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章对你有帮助的话 欢迎 评论&#x1f4ac; 点赞&#x1…

一台服务器通过nginx安装多个web应用

1.首先安装nginx网站服务器 yum install nginx 2.nginx 的主配置文件&#xff1a;/etc/nginx/nginx.conf (一台服务器有两个域名部署) 我们在/etc/nginx/nginx.d/下创建一个conf文件&#xff0c;这个文件会被嵌套到主配置文件当中 server { listen 80; …

《数据库应用系统实践》------ 个人作品管理系统

系列文章 《数据库应用系统实践》------ 个人作品管理系统 文章目录 系列文章一、需求分析1、系统背景2、 系统功能结构&#xff08;需包含功能结构框图和模块说明&#xff09;3&#xff0e;系统功能简介 二、概念模型设计1&#xff0e;基本要素&#xff08;符号介绍说明&…

Netty客户端与服务器端闲暇检测与心跳检测(三)

网络应用程序中普遍存在一个问题&#xff1a;连接假死&#xff0c;连接假死现象是:在某一端(服务器端|客户端)看来,底层的TCP连接已经断开,但是应用程序没有捕获到,因此会认为这个连接还存在。从TCP层面来说,只有收到四次握手数据包,或者一个RST数据包,才表示连接状态已断开; 连…

Spring练习二ssm框架整合应用

导入教程的项目&#xff0c;通过查看源码对aop面向切面编程进行理解分析 aop面向编程就像是我们给程序某些位置丢下锚点&#xff08;切入点&#xff09;以及当走到锚点时需要调用的方法&#xff08;切面&#xff09;。在程序运行的过程中&#xff0c; 一旦到达锚点&#xff0c;…

f-stack的源码编译安装

DPDK虽然能提供高性能的报文转发&#xff08;安装使用方法见DPDK的源码编译安装&#xff09;&#xff0c;但是它并没有提供对应的IP/TCP协议栈&#xff0c;所以在网络产品的某些功能场景下&#xff08;特别是涉及到需要使用TCP协议栈的情况&#xff09;&#xff0c;比如BGP邻居…

Ansible原理简介与安装篇

工作原理 1、在Ansible管理体系中&#xff0c;存在“管理节点”和“被管理节点” 2、被管理节点通常被称为”资产“ 3、在管理节点上&#xff0c;Ansible将AdHoc或PlayBook转换为python脚本。并通过SSH将这些python脚本传递到被管理服务器上。在被管理服务器上依次执行&#xf…

遥感云大数据在灾害、水体与湿地领域及GPT模型应用

近年来遥感技术得到了突飞猛进的发展&#xff0c;航天、航空、临近空间等多遥感平台不断增加&#xff0c;数据的空间、时间、光谱分辨率不断提高&#xff0c;数据量猛增&#xff0c;遥感数据已经越来越具有大数据特征。遥感大数据的出现为相关研究提供了前所未有的机遇&#xf…

基础篇010.2 STM32驱动RC522 RFID模块之二:STM32硬件SPI驱动RC522

目录 基础篇010.1 STM32驱动RC522 RFID模块之一&#xff1a;基础知识 1. 实验硬件及原理图 1.1 RFID硬件 1.2 硬件原理图 2. 单片机与RFID硬件模块分析 3. 利用STM32CubeMX创建MDK工程 3.1 STM32CubeMX工程创建 3.2 配置调试方式 3.3 配置时钟电路 3.4 配置时钟 3.5 配…

【C++】Map、Set 模拟实现

文章目录 &#x1f4d5; 概念&#x1f4d5; 实现框架Find()★ 迭代器 ★反向迭代器map 的 operator[ ] &#x1f4d5; 源代码rb_tree.hset.hmap.h &#x1f4d5; 概念 map、set 是 C 中的关联式容器&#xff0c;由于 map 和set所开放的各种操作接口&#xff0c;RB-tree 也都提…

2023.05.28 学习周报

文章目录 摘要文献阅读1.题目2.现有方法存在的局限性3.SR-GNN模型4.模型的组成部分4.1 构图4.2 item向量表示4.3 session向量表示4.4 预测模块 5.实验与分析5.1 数据集5.2 比较方法5.3 评估指标5.4 实验结果 6.结论 有限元法1.一个例子2.进一步 深度学习1.张量场2.对流-扩散方程…

Linux(基础IO详解)

在基础IO这篇博客中&#xff0c;我们将了解到文件系统的构成&#xff0c;以及缓冲区究竟是个什么东东&#xff0c;我们都知道缓冲区&#xff0c;有时也谈论缓冲区&#xff0c;但不一定真的去深入了解过缓冲区。为什么内存和磁盘交互速度如此之慢&#xff1f;为什么都说Linux中一…

Dom解析与Sax解析的区别

1.Dom解析&#xff1a; Dom解析的时候&#xff0c;首先要把整个文件读取完毕&#xff0c;装载到内存中。然后进行解析&#xff0c;在解析的过程中&#xff0c;你可以直接获取某个节点&#xff0c;进行操作&#xff0c;也可以获取根节点然后进行遍历操作&#xff0c;得到所有的…