SpringCloud高级篇 - 微服务保护

news2024/11/24 8:38:52

✨作者:猫十二懿

❤️‍🔥账号:CSDN 、掘金 、个人博客 、Github

🎉公众号:猫十二懿

学习课程视频

SpringCloud 高级篇 – 微服务保护

1.初识Sentinel

1.1.雪崩问题及解决方案

1.1.1.雪崩问题

微服务中,服务间调用关系错综复杂,一个微服务往往依赖于多个其它微服务。

1533829099748

如图,如果服务提供者I发生了故障,当前的应用的部分业务因为依赖于服务I,因此也会被阻塞。此时,其它不依赖于服务I的业务似乎不受影响。

1533829198240

但是,依赖服务I的业务请求被阻塞,用户不会得到响应,则tomcat的这个线程不会释放,于是越来越多的用户请求到来,越来越多的线程会阻塞:

1533829307389

服务器支持的线程和并发数有限,请求一直阻塞,会导致服务器资源耗尽,从而导致所有其它服务都不可用,那么当前服务也就不可用了。

那么,依赖于当前服务的其它服务随着时间的推移,最终也都会变的不可用,形成级联失败,雪崩就发生了:

image-20210715172710340

1.1.2.超时处理

解决雪崩问题的常见方式有四种:

•超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待

image-20210715172820438

1.1.3.仓壁模式

方案2:仓壁模式

仓壁模式来源于船舱的设计:

image-20210715172946352

船舱都会被隔板分离为多个独立空间,当船体破损时,只会导致部分空间进入,将故障控制在一定范围内,避免整个船体都被淹没。

于此类似,我们可以限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。

image-20210715173215243

1.1.4.断路器

断路器模式:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。

断路器会统计访问某个服务的请求数量,异常比例:

image-20210715173327075

当发现访问服务D的请求异常比例过高时,认为服务D有导致雪崩的风险,会拦截访问服务D的一切请求,形成熔断:

image-20210715173428073

1.1.5.限流

流量控制:限制业务访问的QPS,避免服务因流量的突增而故障。

image-20210715173555158

1.1.6.总结

什么是雪崩问题?

  • 微服务之间相互调用,因为调用链中的一个服务故障,引起整个链路都无法访问的情况。

可以认为:

限流是对服务的保护,避免因瞬间高并发流量而导致服务故障,进而避免雪崩。是一种预防措施。

超时处理、线程隔离、降级熔断是在部分服务故障时,将故障控制在一定范围,避免雪崩。是一种补救措施。

1.2.服务保护技术对比

在SpringCloud当中支持多种服务保护技术:

  • Netfix Hystrix
  • Sentinel
  • Resilience4J

早期比较流行的是Hystrix框架,但目前国内实用最广泛的还是阿里巴巴的Sentinel框架,这里我们做下对比:

SentinelHystrix
隔离策略信号量隔离线程池隔离/信号量隔离
熔断降级策略基于慢调用比例或异常比例基于失败比率
实时指标实现滑动窗口滑动窗口(基于 RxJava)
规则配置支持多种数据源支持多种数据源
扩展性多个扩展点插件的形式
基于注解的支持支持支持
限流基于 QPS,支持基于调用关系的限流有限的支持
流量整形支持慢启动、匀速排队模式不支持
系统自适应保护支持不支持
控制台开箱即用,可配置规则、查看秒级监控、机器发现等不完善
常见框架的适配Servlet、Spring Cloud、Dubbo、gRPC 等Servlet、Spring Cloud Netflix

1.3.Sentinel介绍和安装

1.3.1.初识Sentinel

Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址:https://sentinelguard.io/zh-cn/index.html

Sentinel 具有以下特征:

丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。

完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。

广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。

完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。

1.3.2.安装Sentinel

1)下载

sentinel官方提供了UI控制台,方便我们对系统做限流设置。大家可以在GitHub下载。

课前资料也提供了下载好的jar包:

image-20210715174252531

2)运行

将jar包放到任意非中文目录,执行命令:

java -jar sentinel-dashboard-1.8.1.jar

如果要修改Sentinel的默认端口、账户、密码,可以通过下列配置:

配置项默认值说明
server.port8080服务端口
sentinel.dashboard.auth.usernamesentinel默认用户名
sentinel.dashboard.auth.passwordsentinel默认密码

例如,修改端口:

java -Dserver.port=8090 -jar sentinel-dashboard-1.8.1.jar

3)访问

访问http://localhost:8080页面,就可以看到sentinel的控制台了:

image-20210715190827846

需要输入账号和密码,默认都是:sentinel

登录后,发现一片空白,什么都没有:

image-20210715191134448

这是因为我们还没有与微服务整合。

1.4.微服务整合Sentinel

我们在order-service中整合sentinel,并连接sentinel的控制台,步骤如下:

1)引入sentinel依赖

<!--sentinel-->
<dependency>
    <groupId>com.alibaba.cloud</groupId> 
    <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2)配置控制台

修改application.yaml文件,添加下面内容:

server:
  port: 8088
spring:
  cloud: 
    sentinel:
      transport:
        dashboard: localhost:8080

3)访问order-service的任意端点

打开浏览器,访问http://localhost:8088/order/101,这样才能触发sentinel的监控。

然后再访问sentinel的控制台,查看效果:

image-20210715191241799

2.流量控制

雪崩问题虽然有四种方案,但是限流是避免服务因突发的流量而发生故障,是对微服务雪崩问题的预防。我们先学习这种模式。

2.1.簇点链路

当请求进入微服务时,首先会访问DispatcherServlet,然后进入Controller、Service、Mapper,这样的一个调用链就叫做簇点链路。簇点链路中被监控的每一个接口就是一个资源

默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint,也就是controller中的方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。

例如,我们刚才访问的order-service中的OrderController中的端点:/order/{orderId}

image-20210715191757319

流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:

  • 流控:流量控制
  • 降级:降级熔断
  • 热点:热点参数限流,是限流的一种
  • 授权:请求的权限控制

2.1.快速入门

2.1.1.示例

点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。

image-20210715191757319

表单中可以填写限流规则,如下:

image-20210715192010657

其含义是限制 /order/{orderId}这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错。

2.1.2.练习:

需求:给 /order/{orderId}这个资源设置流控规则,QPS不能超过 5,然后测试。

1)首先在sentinel控制台添加限流规则

image-20210715192455429

2)利用jmeter测试

如果没有用过jmeter,可以参考课前资料提供的文档《Jmeter快速入门.md》

课前资料提供了编写好的Jmeter测试样例:

打开jmeter,导入课前资料提供的测试样例:

image-20210715200537171

选择:

image-20210715200635414

20个用户,2秒内运行完,QPS是10,超过了5.

选中流控入门,QPS<5右键运行:

image-20210715200804594

注意,不要点击菜单中的执行按钮来运行。

结果:

image-20210715200853671

可以看到,成功的请求每次只有5个

2.2.流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

image-20210715201827886

快速入门测试的就是直接模式。

2.2.1.关联模式

关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

配置规则

image-20210715202540786

语法说明:当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。

使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。

需求说明

  • 在OrderController新建两个端点:/order/query和/order/update,无需实现业务

  • 配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流

1)定义/order/query端点,模拟订单查询

@GetMapping("/query")
public String queryOrder() {
    return "查询订单成功";
}

2)定义/order/update端点,模拟订单更新

@GetMapping("/update")
public String updateOrder() {
    return "更新订单成功";
}

重启服务,查看sentinel控制台的簇点链路:

image-20210716101805951

3)配置流控规则

对哪个端点限流,就点击哪个端点后面的按钮。我们是对订单查询/order/query限流,因此点击它后面的按钮:

image-20210716101934499

在表单中填写流控规则:

image-20210716102103814

4)在Jmeter测试

选择《流控模式-关联》:

image-20210716102416266

可以看到1000个用户,100秒,因此QPS为10,超过了我们设定的阈值:5

查看http请求:

image-20210716102532554

请求的目标是/order/update,这样这个断点就会触发阈值。

但限流的目标是/order/query,我们在浏览器访问,可以发现:

image-20210716102636030

确实被限流了。

5)总结

满足下面条件可以使用关联模式:

  1. 两个有竞争关系的资源
  2. 一个优先级较高,一个优先级较低

2.2.2.链路模式

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。

配置示例

例如有两条请求链路:

  • /test1 --> /common

  • /test2 --> /common

如果只希望统计从/test2进入到/common的请求,则可以这样配置:

image-20210716103536346

实战案例

需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。

步骤:

  1. 在OrderService中添加一个queryGoods方法,不用实现业务

  2. 在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法

  3. 在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法

  4. 给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2

实现:

1)添加查询商品方法

在order-service服务中,给OrderService类添加一个queryGoods方法:

public void queryGoods(){
    System.err.println("查询商品");
}

2)查询订单时,查询商品

在order-service的OrderController中,修改/order/query端点的业务逻辑:

@GetMapping("/query")
public String queryOrder() {
    // 查询商品
    orderService.queryGoods();
    // 查询订单
    System.out.println("查询订单");
    return "查询订单成功";
}

3)新增订单,查询商品

在order-service的OrderController中,修改/order/save端点,模拟新增订单:

@GetMapping("/save")
public String saveOrder() {
    // 查询商品
    orderService.queryGoods();
    // 查询订单
    System.err.println("新增订单");
    return "新增订单成功";
}

4)给查询商品添加资源标记

默认情况下,OrderService中的方法是不被Sentinel监控的,需要我们自己通过注解来标记要监控的方法。

给OrderService的queryGoods方法添加@SentinelResource注解:

@SentinelResource("goods")
public void queryGoods(){
    System.err.println("查询商品");
}

链路模式中,是对不同来源的两个链路做监控。但是sentinel默认会给进入SpringMVC的所有请求设置同一个root资源,会导致链路模式失效。

我们需要关闭这种对SpringMVC的资源聚合,修改order-service服务的application.yml文件:

spring:
  cloud:
    sentinel:
      web-context-unify: false # 关闭context整合

重启服务,访问/order/query和/order/save,可以查看到sentinel的簇点链路规则中,出现了新的资源:

image-20210716105227163

5)添加流控规则

点击goods资源后面的流控按钮,在弹出的表单中填写下面信息:

image-20210716105408723

只统计从/order/query进入/goods的资源,QPS阈值为2,超出则被限流。

6)Jmeter测试

选择《流控模式-链路》:

可以看到这里200个用户,50秒内发完,QPS为4,超过了我们设定的阈值2

一个http请求是访问/order/save:

image-20210716105812789

运行的结果:

image-20210716110027064

完全不受影响。

另一个是访问/order/query:

image-20210716105855951

运行结果:

image-20210716105956401

每次只有2个通过。

2.2.3.总结

流控模式有哪些?

  • 直接:对当前资源限流

  • 关联:高优先级资源触发阈值,对低优先级资源限流。

  • 链路:阈值统计时,只统计从指定资源进入当前资源的请求,是对请求来源的限流

2.3.流控效果

在流控的高级选项中,还有一个流控效果选项:

image-20210716110225104

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。

  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值

  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

2.3.1.warm up

阈值一般是一个微服务能承担的最大QPS,但是一个服务刚刚启动时,一切资源尚未初始化(冷启动),如果直接将QPS跑到最大值,可能导致服务瞬间宕机。

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold(最大阈值) / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3.

例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.

image-20210716110629796

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒

1)配置流控规则:

image-20210716111012387

2)Jmeter测试

选择《流控效果,warm up》:

image-20210716111136699

QPS为10.

刚刚启动时,大部分请求失败,成功的只有3个,说明QPS被限定在3:

image-20210716111303701

随着时间推移,成功比例越来越高:

image-20210716111404717

到Sentinel控制台查看实时监控:

image-20210716111526480

一段时间后:

image-20210716111658541

2.3.2.排队等待

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。

排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

工作原理

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常。

image-20230519152721304

那什么叫做预期等待时长呢?

比如现在一下子来了12 个请求,因为每200ms执行一个请求,那么:

  • 第6个请求的预期等待时长 = 200 * (6 - 1) = 1000ms
  • 第12个请求的预期等待时长 = 200 * (12-1) = 2200ms

现在,第1秒同时接收到10个请求,但第2秒只有1个请求,此时QPS的曲线这样的:

image-20210716113147176

如果使用队列模式做流控,所有进入的请求都要排队,以固定的200ms的间隔执行,QPS会变的很平滑:

image-20210716113426524

平滑的QPS曲线,对于服务器来说是更友好的。

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s

1)添加流控规则

image-20210716114048918

2)Jmeter测试

选择《流控效果,队列》:

image-20210716114243558

QPS为15,已经超过了我们设定的10。

如果是之前的 快速失败、warmup模式,超出的请求应该会直接报错。

但是我们看看队列模式的运行结果:

image-20210716114429361

全部都通过了。

再去sentinel查看实时监控的QPS曲线:

image-20210716114522935

QPS非常平滑,一致保持在10,但是超出的请求没有被拒绝,而是放入队列。因此响应时间(等待时间)会越来越长。

当队列满了以后,才会有部分请求失败:

image-20210716114651137

2.3.3.总结

流控效果有哪些?

  • 快速失败:QPS超过阈值时,拒绝新的请求

  • warm up: QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。

  • 排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝

2.4.热点参数限流

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是**分别统计参数值相同的请求**,判断是否超过QPS阈值。

2.4.1.全局参数限流

例如,一个根据id查询商品的接口:

image-20210716115014663

访问/goods/{id}的请求中,id参数值会有变化,热点参数限流会根据参数值分别统计QPS,统计结果:

image-20210716115131463

当id=1的请求触发阈值被限流时,id值不为1的请求不受影响。

配置示例:

image-20210716115232426

代表的含义是:对hot这个资源的0号参数(第一个参数)做统计,每1秒相同参数值的请求数不能超过5

2.4.2.热点参数限流

刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.

而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:

image-20210716115717523

结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:

  • 如果参数值是100,则每1秒允许的QPS为10

  • 如果参数值是101,则每1秒允许的QPS为15

2.4.4.案例

案例需求:给/order/{orderId}这个资源添加热点参数限流,规则如下:

  • 默认的热点参数规则是每1秒请求量不超过2

  • 给102这个参数设置例外:每1秒请求量不超过4

  • 给103这个参数设置例外:每1秒请求量不超过10

注意事项:热点参数限流对默认的SpringMVC资源无效,需要利用@SentinelResource注解标记资源

1)标记资源

给order-service中的OrderController中的/order/{orderId}资源添加注解:

image-20210716120033572

2)热点参数限流规则

访问该接口,可以看到我们标记的hot资源出现了:

image-20210716120208509

这里不要点击hot后面的按钮,页面有BUG

点击左侧菜单中热点规则菜单:

image-20210716120319009

点击新增,填写表单:

image-20210716120536714

3)Jmeter测试

选择《热点参数限流 QPS1》:

image-20210716120754527

这里发起请求的QPS为5.

包含3个http请求:

普通参数,QPS阈值为2

image-20210716120840501

运行结果:

image-20210716121105567

例外项,QPS阈值为4

image-20210716120900365

运行结果:

image-20210716121201630

例外项,QPS阈值为10

image-20210716120919131

运行结果:

image-20210716121220305

3.隔离和降级

限流是一种预防措施,虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。

而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。

线程隔离之前讲到过:调用者在调用服务提供者时,给每个调用的请求分配独立线程池,出现故障时,最多消耗这个线程池内资源,避免把调用者的所有资源耗尽。

image-20210715173215243

熔断降级:是在调用方这边加入断路器,统计对服务提供者的调用,如果调用的失败比例过高,则熔断该业务,不允许访问该服务的提供者了。

image-20210715173428073

可以看到,不管是线程隔离还是熔断降级,都是对客户端(调用方)的保护。需要在调用方 发起远程调用时做线程隔离、或者服务熔断。

而我们的微服务远程调用都是基于Feign来完成的,因此我们需要将Feign与Sentinel整合,在Feign里面实现线程隔离和服务熔断。

3.1.FeignClient整合Sentinel

SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。

3.1.1.修改配置,开启sentinel功能

修改OrderService的application.yml文件,开启Feign的Sentinel功能:

feign:
  sentinel:
    enabled: true # 开启feign对sentinel的支持

3.1.2.编写失败降级逻辑

业务失败后,不能直接报错,而应该返回用户一个友好提示或者默认结果,这个就是失败降级逻辑。

给FeignClient编写失败后的降级逻辑

①方式一:FallbackClass,无法对远程调用的异常做处理

②方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种

这里我们演示方式二的失败降级处理。

步骤一:在feing-api项目中定义类,实现FallbackFactory:

image-20210716122403502

代码:

@Slf4j
public class UserClientFallbackFactory implements FallbackFactory<UserClient> {
    @Override
    public UserClient create(Throwable throwable) {
        return new UserClient() {
            @Override
            public User findById(Long id) {
                log.error("查询用户异常", throwable);
                return new User();
            }
        };
    }
}

步骤二:在feing-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:

@Bean
public UserClientFallbackFactory userClientFallbackFactory(){
    return new UserClientFallbackFactory();
}

步骤三:在feing-api项目中的UserClient接口中使用UserClientFallbackFactory:

@FeignClient(value = "userservice", fallbackFactory = UserClientFallbackFactory.class)
public interface UserClient 
    @GetMapping("/user/{id}")
    User findById(@PathVariable("id") Long id);
}

重启后,访问一次订单查询业务,然后查看sentinel控制台,可以看到新的簇点链路:

image-20210716123705780

3.1.3.总结

Sentinel支持的雪崩解决方案:

  • 线程隔离(仓壁模式)
  • 降级熔断

Feign整合Sentinel的步骤:

  • 在application.yml中配置:feign.sentienl.enable=true
  • 给FeignClient编写FallbackFactory并注册为Bean
  • 将FallbackFactory配置到FeignClient

3.2.线程隔离(舱壁模式)

3.2.1.线程隔离的实现方式

线程隔离有两种方式实现:

  • 线程池隔离

  • 信号量隔离(Sentinel默认采用)

如图:

image-20210716123036937

线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果

信号量隔离:不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求。

两者的优缺点:

image-20210716123240518

扇出:接受一个,发出多个

扇出是指一个节点向其它多个节点发送消息或任务的过程。在计算机领域中,扇出通常用于描述分布式系统中任务被分发到多个工作节点上执行的情况。

在分布式系统中,通常有一个节点(例如负载均衡器)负责将任务分配给多个工作节点。这个过程就是扇出。当任务被分配到工作节点后,工作节点就会独立地执行任务并将结果返回给调度节点。这个过程我们称之为扇入。

扇出能够提高系统的处理能力和吞吐量,因为任务可以同时被多个工作节点处理,从而快速完成任务。但是,扇出也会增加系统的复杂性和维护难度,因为需要对任务进行分发和调度,并确保所有工作节点都能够正确地接收和处理任务。

扇出在很多场景中都很常见,例如分布式计算、流式处理、消息队列等。这些技术都需要扇出来实现任务的分发和并行处理。

3.2.2.sentinel的线程隔离

用法说明

在添加限流规则时,可以选择两种阈值类型:

image-20210716123411217

  • QPS:就是每秒的请求数,在快速入门中已经演示过

  • 线程数:是该资源能使用用的tomcat线程数的最大值。也就是通过限制线程数量,实现线程隔离(舱壁模式)。

案例需求:给 order-service服务中的UserClient的查询用户接口设置流控规则,线程数不能超过 2。然后利用jemeter测试。

1)配置隔离规则

选择feign接口后面的流控按钮:

image-20210716123831992

填写表单:

image-20210716123936844

2)Jmeter测试

选择《阈值类型-线程数<2》:

image-20210716124229894

一次发生10个请求,有较大概率并发线程数超过2,而超出的请求会走之前定义的失败降级逻辑。

查看运行结果:

image-20210716124147820

发现虽然结果都是通过了,不过部分请求得到的响应是降级返回的null信息。

3.2.3.总结

线程隔离的两种手段是?

  • 信号量隔离

  • 线程池隔离

信号量隔离的特点是?

  • 基于计数器模式,简单,开销小

线程池隔离的特点是?

  • 基于线程池模式,有额外开销,但隔离控制更强

3.3.熔断降级

熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。

断路器控制熔断和放行是通过状态机来完成的:

image-20210716130958518

状态机包括三个状态:

  • closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
  • open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态
  • half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
    • 请求成功:则切换到closed状态
    • 请求失败:则切换到open状态

断路器熔断策略有三种:慢调用、异常比例、异常数

3.3.1.慢调用

慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。

例如:

image-20210716145934347

解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。

案例

需求:给 UserClient的查询用户接口设置降级规则,慢调用的RT阈值为50ms,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5

1)设置慢调用

修改user-service中的/user/{id}这个接口的业务。通过休眠模拟一个延迟时间:

image-20210716150234787

此时,orderId=101的订单,关联的是id为1的用户,调用时长为60ms:

image-20210716150510956

orderId=102的订单,关联的是id为2的用户,调用时长为非常短;

image-20210716150605208

2)设置熔断规则

下面,给feign接口设置降级规则:

image-20210716150654094

规则:

image-20210716150740434

超过50ms的请求都会被认为是慢请求

3)测试

在浏览器访问:http://localhost:8088/order/101,快速刷新5次,可以发现:

image-20210716150911004

触发了熔断,请求时长缩短至5ms,快速失败了,并且走降级逻辑,返回的null

在浏览器访问:http://localhost:8088/order/102,竟然也被熔断了:

image-20210716151107785

3.3.2.异常比例、异常数

异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。

例如,一个异常比例设置:

image-20210716131430682

解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.4,则触发熔断。

一个异常数设置:

image-20210716131522912

解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于2次,则触发熔断。

案例

需求:给 UserClient的查询用户接口设置降级规则,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s

1)设置异常请求

首先,修改user-service中的/user/{id}这个接口的业务。手动抛出异常,以触发异常比例的熔断:

image-20210716151348183

也就是说,id 为 2时,就会触发异常

2)设置熔断规则

下面,给feign接口设置降级规则:

image-20210716150654094

规则:

image-20210716151538785

在5次请求中,只要异常比例超过0.4,也就是有2次以上的异常,就会触发熔断。

3)测试

在浏览器快速访问:http://localhost:8088/order/102,快速刷新5次,触发熔断:

image-20210716151722916

此时,我们去访问本来应该正常的103:

image-20210716151844817

3.4 总结

Sentinel熔断降级的策略有哪些?

  • 慢调用比例:超过指定时长的调用为慢调用,统计单位时长内慢调用的比例,超过阈值则熔断

  • 异常比例:统计单位时长内异常调用的比例,超过阈值则熔断

  • 异常数:统计单位时长内异常调用的次数,超过阈值则熔断

4.授权规则

授权规则可以对请求方来源做判断和控制。

4.1.授权规则

4.1.1.基本规则

授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。

  • 白名单:来源(origin)在白名单内的调用者允许访问

  • 黑名单:来源(origin)在黑名单内的调用者不允许访问

点击左侧菜单的授权,可以看到授权规则:

image-20210716152010750

  • 资源名:就是受保护的资源,例如/order/{orderId}

  • 流控应用:是来源者的名单,

    • 如果是勾选白名单,则名单中的来源被许可访问。
    • 如果是勾选黑名单,则名单中的来源被禁止访问。

比如:

image-20210716152349191

我们允许请求从gateway到order-service,不允许浏览器访问order-service,那么白名单中就要填写网关的来源名称(origin)

4.1.2.如何获取origin

Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。

public interface RequestOriginParser {
    /**
     * 从请求request对象中获取origin,获取方式自定义
     */
    String parseOrigin(HttpServletRequest request);
}

这个方法的作用就是从request对象中,获取请求者的origin值并返回。

默认情况下,sentinel不管请求者从哪里来,返回值永远是default,也就是说一切请求的来源都被认为是一样的值default。

因此,我们需要自定义这个接口的实现,让不同的请求,返回不同的origin

例如order-service服务中,我们定义一个RequestOriginParser的实现类:

@Component
public class HeaderOriginParser implements RequestOriginParser {
    @Override
    public String parseOrigin(HttpServletRequest request) {
        // 1.获取请求头
        String origin = request.getHeader("origin");
        // 2.非空判断
        if (StringUtils.isEmpty(origin)) {
            origin = "blank";
        }
        return origin;
    }
}

我们会尝试从request-header中获取origin值。

4.1.3.给网关添加请求头

既然获取请求origin的方式是从reques-header中获取origin值,我们必须让所有从gateway路由到微服务的请求都带上origin头

这个需要利用之前学习的一个GatewayFilter来实现,AddRequestHeaderGatewayFilter。

修改gateway服务中的application.yml,添加一个defaultFilter:

spring:
  cloud:
    gateway:
      default-filters:
        - AddRequestHeader=origin,gateway
      routes:

这样,从gateway路由的所有请求都会带上origin头,值为gateway。而从其它地方到达微服务的请求则没有这个头。

4.1.4.配置授权规则

接下来,我们添加一个授权规则,放行origin值为gateway的请求。

image-20210716153250134

配置如下:

image-20210716153301069

现在,我们直接跳过网关,访问order-service服务:

image-20210716153348396

通过网关访问:

image-20210716153434095

4.2.自定义异常结果

默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。异常结果都是flow limmiting(限流)。这样不够友好,无法得知是限流还是降级还是授权拦截。

4.2.1.异常类型

而如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:

public interface BlockExceptionHandler {
    /**
     * 处理请求被限流、降级、授权拦截时抛出的异常:BlockException
     */
    void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception;
}

这个方法有三个参数:

  • HttpServletRequest request:request对象
  • HttpServletResponse response:response对象
  • BlockException e:被sentinel拦截时抛出的异常

这里的BlockException包含多个不同的子类:

异常说明
FlowException限流异常
ParamFlowException热点参数限流的异常
DegradeException降级异常
AuthorityException授权规则异常
SystemBlockException系统规则异常

4.2.2.自定义异常处理

下面,我们就在order-service定义一个自定义异常处理类:

@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {
    @Override
    public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
        String msg = "未知异常";
        int status = 429;
        if (e instanceof FlowException) {
            msg = "请求被限流了";
        } else if (e instanceof ParamFlowException) {
            msg = "请求被热点参数限流";
        } else if (e instanceof DegradeException) {
            msg = "请求被降级了";
        } else if (e instanceof AuthorityException) {
            msg = "没有权限访问";
            status = 401;
        }
        response.setContentType("application/json;charset=utf-8");
        response.setStatus(status);
        response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");
    }
}

重启测试,在不同场景下,会返回不同的异常消息.

限流:

image-20210716153938887

授权拦截时:

image-20210716154012736

5.规则持久化

现在,sentinel的所有规则都是内存存储,重启后所有规则都会丢失。在生产环境下,我们必须确保这些规则的持久化,避免丢失。

5.1.规则管理模式

规则是否能持久化,取决于规则管理模式,sentinel支持三种规则管理模式:

  • 原始模式:Sentinel的默认模式,将规则保存在内存,重启服务会丢失。
  • pull模式
  • push模式

5.1.1.pull模式

pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。

image-20210716154155238

缺点:时效性问题,Sentinel更新之后不会实时更新自己的Sentinel

5.1.2.push模式

push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。

image-20210716154215456

5.2.实现push模式 - Sentinel 规则持久化

5.2.1 修改order-service服务

修改OrderService,让其监听Nacos中的sentinel规则配置。

具体步骤如下:

1.引入依赖

在order-service中引入sentinel监听nacos的依赖:

<dependency>
    <groupId>com.alibaba.csp</groupId>
    <artifactId>sentinel-datasource-nacos</artifactId>
</dependency>

2.配置nacos地址

在order-service中的application.yml文件配置nacos地址及监听的配置信息:

spring:
  cloud:
    sentinel:
      datasource:
        flow:
          nacos:
            server-addr: localhost:8848 # nacos地址
            dataId: orderservice-flow-rules
            groupId: SENTINEL_GROUP
            rule-type: flow # 还可以是:degrade、authority、param-flow

5.2.1 修改sentinel-dashboard源码

SentinelDashboard默认不支持nacos的持久化,需要修改源码。

1. 解压

解压课前资料中的sentinel源码包:

然后并用IDEA打开这个项目,结构如下:

2. 修改nacos依赖

在sentinel-dashboard源码的pom文件中,nacos的依赖默认的scope是test,只能在测试时使用,这里要去除:

将sentinel-datasource-nacos依赖的scope去掉:

<dependency>
    <groupId>com.alibaba.csp</groupId>
    <artifactId>sentinel-datasource-nacos</artifactId>
</dependency>

3. 添加nacos支持

在sentinel-dashboard的test包下,已经编写了对nacos的支持,我们需要将其拷贝到main下。

image-20210618201726280

4. 修改nacos地址

然后,还需要修改测试代码中的NacosConfig类:

修改其中的nacos地址,让其读取application.properties中的配置:

在sentinel-dashboard的application.properties中添加nacos地址配置:

nacos.addr=localhost:8848

5. 配置nacos数据源

另外,还需要修改com.alibaba.csp.sentinel.dashboard.controller.v2包下的FlowControllerV2类:

让我们添加的Nacos数据源生效:

6. 修改前端页面

接下来,还要修改前端页面,添加一个支持nacos的菜单。

修改src/main/webapp/resources/app/scripts/directives/sidebar/目录下的sidebar.html文件:

将其中的这部分注释打开:

修改其中的文本:

7. 重新编译、打包项目

运行IDEA中的maven插件,编译和打包修改好的Sentinel-Dashboard:

8.启动

启动方式跟官方一样:

java -jar sentinel-dashboard.jar

如果要修改nacos地址,需要添加参数:

java -jar -Dnacos.addr=localhost:8848 sentinel-dashboard.jar

资料中的sentinel源码包:

[外链图片转存中…(img-R3wrKaMR-1685249577484)]

然后并用IDEA打开这个项目,结构如下:

[外链图片转存中…(img-qCqYeHfA-1685249577486)]

2. 修改nacos依赖

在sentinel-dashboard源码的pom文件中,nacos的依赖默认的scope是test,只能在测试时使用,这里要去除:

[外链图片转存中…(img-FCTF9zK3-1685249577487)]

将sentinel-datasource-nacos依赖的scope去掉:

<dependency>
    <groupId>com.alibaba.csp</groupId>
    <artifactId>sentinel-datasource-nacos</artifactId>
</dependency>

3. 添加nacos支持

在sentinel-dashboard的test包下,已经编写了对nacos的支持,我们需要将其拷贝到main下。

[外链图片转存中…(img-IKoBFvxv-1685249577488)]

4. 修改nacos地址

然后,还需要修改测试代码中的NacosConfig类:

[外链图片转存中…(img-8O80bf6g-1685249577489)]

修改其中的nacos地址,让其读取application.properties中的配置:

[外链图片转存中…(img-eqFsVt6x-1685249577490)]

在sentinel-dashboard的application.properties中添加nacos地址配置:

nacos.addr=localhost:8848

5. 配置nacos数据源

另外,还需要修改com.alibaba.csp.sentinel.dashboard.controller.v2包下的FlowControllerV2类:

[外链图片转存中…(img-ZbwtQV0z-1685249577491)]

让我们添加的Nacos数据源生效:

[外链图片转存中…(img-IapgzBn3-1685249577492)]

6. 修改前端页面

接下来,还要修改前端页面,添加一个支持nacos的菜单。

修改src/main/webapp/resources/app/scripts/directives/sidebar/目录下的sidebar.html文件:

[外链图片转存中…(img-7czoz8i1-1685249577493)]

将其中的这部分注释打开:

[外链图片转存中…(img-lmMYB2Xw-1685249577494)]

修改其中的文本:

[外链图片转存中…(img-kMfrMxZN-1685249577496)]

7. 重新编译、打包项目

运行IDEA中的maven插件,编译和打包修改好的Sentinel-Dashboard:

8.启动

启动方式跟官方一样:

java -jar sentinel-dashboard.jar

如果要修改nacos地址,需要添加参数:

java -jar -Dnacos.addr=localhost:8848 sentinel-dashboard.jar

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/579516.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring IOC体系结构设计原理详解

Spring是一个开源的JavaEE全栈框架&#xff0c;其中最为重要的核心模块是Spring IOC&#xff08;Inversion of Control&#xff09;容器。它负责对象的生命周期管理及依赖注入&#xff0c;为开发者提供了一种主动参与对象创建过程的方式。本文将从IOC容器的设计原理出发&#x…

新增ES6中的扩展

1. ES6中数组新增了哪些扩展&#xff1f; Rest 参数与 Spread 语法 在 JavaScript 中&#xff0c;很多内建函数都支持传入任意数量的参数。 例如&#xff1a; Math.max(arg1, arg2, ..., argN) —— 返回参数中的最大值。Object.assign(dest, src1, ..., srcN) —— 依次将属…

Java 修饰符关键字

&#x1f49f;这里是CS大白话专场&#xff0c;让枯燥的学习变得有趣&#xff01; &#x1f49f;没有对象不要怕&#xff0c;我们new一个出来&#xff0c;每天对ta说不尽情话&#xff01; &#x1f49f;好记性不如烂键盘&#xff0c;自己总结不如收藏别人&#xff01; static …

【图神经网络】手把手带你快速上手OpenHGNN

手把手带你快速上手OpenHGNN 1. 评估新的数据集1.1 如何构建一个新的数据集 2. 使用一个新的模型2.1 如何构建一个新模型 3. 应用到一个新场景3.1 如何构建一个新任务3.2 如何构建一个新的trainerflow 内容来源 1. 评估新的数据集 如果需要&#xff0c;可以指定自己的数据集。…

【ROS】服务通信、话题通信的应用

Halo&#xff0c;这里是Ppeua。平时主要更新C语言&#xff0c;C&#xff0c;数据结构算法…感兴趣就关注我吧&#xff01;你定不会失望。 服务通信、话题通信的应用 0. 话题发布1.话题订阅2.服务调用3.话题通信与服务通信的比较 本章将来学习如何利用话题通信&#xff0c;服务…

【软件分析/静态分析】学习笔记02——中间表示Intermediate Representation

&#x1f517; 课程链接&#xff1a;李樾老师和谭天老师的&#xff1a;南京大学《软件分析》课程02&#xff08;Intermediate Representation&#xff09;_哔哩哔哩_bilibili 目录 第二章 Intermediate Representation 2.1 编译器与静态分析器的关系(Compilers & Static …

SpringCloudAlibaba(简介及核心组件使用)

微服务架构常见的问题 一旦采用微服务系统架构&#xff0c;就势必会遇到这样几个问题&#xff1a; 这么多小服务&#xff0c;如何管理他们&#xff1f;服务发现/服务注册---》注册中心 这么多小服务&#xff0c;他们之间如何通讯&#xff1f;Feign -> 基于 http 的微服务调…

使用【Python+Appium】实现自动化测试

一、环境准备 1.脚本语言&#xff1a;Python3.x IDE&#xff1a;安装Pycharm 2.安装Java JDK 、Android SDK 3.adb环境&#xff0c;path添加E:\Software\Android_SDK\platform-tools 4.安装Appium for windows&#xff0c;官网地址 Redirecting 点击下载按钮会到GitHub的…

使用golang 基于 OpenAI Embedding + qdrant 实现k8s本地知识库

使用golang 基于 OpenAI Embedding qdrant 实现k8s本地知识库 文章博客地址:套路猿-使用golang 基于 OpenAI Embedding qdrant 实现k8s本地知识库 流程 将数据集 通过 openai embedding 得到向量组装payload,存入 qdrant用户进行问题搜索,通过 openai embedding 得到向量,从…

“Jmeter WebSocket协议压测”,助你轻松应对高并发场景!

目录 引言 背景说明 步骤1&#xff1a;安装插件JMeter WebSocket Samplers 步骤2&#xff1a;采集器使用 步骤3&#xff1a;脚本执行 结语 引言 在当今高并发的网络环境下&#xff0c;WebSocket协议已经成为了最受欢迎的实时通信技术之一。然而&#xff0c;对于开发人员来…

CorelDRAW2023序列号及下载安装条件

始于1989年并不断推陈出新,致力为设计工作者提供更高效的设计工具&#xff01;CorelDRAW滋养并见证了一代设计师的成长&#xff01;在最短的时间内交付作品&#xff0c;CorelDRAW的智能高效会让你一见钟情&#xff01;CorelDRAW 全称“CorelDRAW Graphics Suite“&#xff0c;也…

Linux:命令tar、zip、unzip对文件或文件夹进行压缩与解压

Linux&#xff1a;命令tar、zip、unzip对文件或文件夹进行压缩与解压 .tar压缩操作&#xff1a; 创建要进行压缩的文件&#xff1a; 对文件进行压缩&#xff1a; 将三个文件压缩成text.tar文件&#xff0c;压缩到当前路径下(默认也是在当前路径) 对比体积&#xff1a; 发现&…

关于f-stack转发框架的几点分析思考

使用DPDK收包&#xff0c;想要用到TCP协议栈&#xff0c;可选的方案有linux原生的tun/tap口以及DPDK自带的KNI驱动&#xff0c;这两种都是通过将DPDK收到的报文注入到linux内核来使用TCP协议栈的功能&#xff0c;然后&#xff0c;用户态协议栈可以考虑开源的f-stack&#xff0c…

在页面使用富文本编译器

富文本编译器的选择 Editor.mdTinyMCESimpleMDECKEditor 还有一些&#xff0c;这里讲的是我用的TinyMCE 1、下载 下载地址&#xff1a;下载tiny | TinyMCE中文文档中文手册 下载开发版本&#xff0c;我下载的最新版 tinymce_6.4.2_dev.zip 将压缩包解压后可以看到下面目录&…

(哈希表 ) 202. 快乐数——【Leetcode每日一题】

❓202. 快乐数 难度&#xff1a;简单 编写一个算法来判断一个数 n 是不是快乐数。 「快乐数」 定义为&#xff1a; 对于一个正整数&#xff0c;每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为 1&#xff0c;也可能是 无限循环 但始终变不到…

Groovy系列一 Groovy基础语法

目录 为什么要学习Groovy Groovy 介绍 Groovy 特点 Groovy 实战 动态类型 简单明了的list,map类型 在groovy世界任何东西都是对象 属性操作变得更容易 GString 闭包 委派&#xff1a;delegate Switch变得更简洁 元编程 强制类型检查 Elvis Operator 安全访问 为…

【五】设计模式~~~创建型模式~~~单例模式(Java)

【学习难度&#xff1a;★☆☆☆☆&#xff0c;使用频率&#xff1a;★★★★☆】 5.1. 模式动机 对于系统中的某些类来说&#xff0c;只有一个实例很重要&#xff0c;例如&#xff0c;一个系统中可以存在多个打印任务&#xff0c;但是只能有一个正在工作的任务&#xff1b;一…

一波三折,终于找到 src 漏洞挖掘的方法了【建议收藏】

0x01 信息收集 1、Google Hack 实用语法 迅速查找信息泄露、管理后台暴露等漏洞语法&#xff0c;例如&#xff1a; filetype:txt 登录 filetype:xls 登录 filetype:doc 登录 intitle:后台管理 intitle:login intitle:后台管理 inurl:admin intitle:index of /查找指定网站&…

C++:征服C指针:指针(二)

指针二 1. 指向数组的指针2. 多维数组三级目录 上一篇文章我们介绍了&#xff1a;什么是指针&#xff0c;指针常见的问题&#xff0c;本篇我们主要介绍 &#xff1a;指针与数组。 1. 指向数组的指针 int *p[n] : 指针数组&#xff0c; 它包括 n 个成员&#xff0c;每个成员都是…

探索Maven创建项目全过程(超详细~~~)

文章目录 1.Maven介绍2.Servlet介绍2.1 Servlet定义2.2 Servlet的主要任务 3.创建Servlet程序步骤3.1 创建项目3.2 引入依赖3.3 创建目录3.4编写代码3.5 打包程序3.6 部署程序3.7 验证结果 4.更方便的部署方式4.1.下载Tomcat插件4.2 配置Tomcat插件4.3运行项目 1.Maven介绍 Ma…