观前提醒
本文内容都是本人亲身经历的,一个一个安装下载测试所感,当然如果你更想用傻瓜式集成包的,那还是跳过这篇文章吧。
当然我不推荐这篇文章的操作,因为我用了差不多1h才有一副图,有N卡,就用N卡,这只是无奈之举而已,方便那些像我一样暂时没有换机子打算的人群,现在主机显卡其实也不贵。
N卡的可以参考这篇文章https://blog.csdn.net/binzai_16/article/details/130216343,但是注意还是要结合这篇文章的避坑指南,不然后续要拿时间去弥补之前所犯的错误。
正文
把该下的东西都下好,就如下的目录清单。
- git https://git-scm.com/download/win
- python 3.10.6 https://link.zhihu.com/?target=https%3A//www.python.org/ftp/python/3.10.6/python-3.10.6-amd64.exe
- 魔法上网 自己想办法找,这个我不好推荐
避坑1:一开始不要急着gitclone后就打开webui-user.bat
1.1 建议使用如下git clone写法
之所以这样做是避免cd到某个文件夹下时,使用git bash
时,提示443或者openSSL等字眼的错误,网上说是网速或者全局的问题,其实也包括权限的问题。
git clone git的地址 “复制到的本地路径地址\文件夹名”
比如我的:
git clone https://github.com/lshqqytiger/stable-diffusion-webui-directml.git “D:\SD”
1.2 编辑webui-user.bat
的第三行如下(因为用A卡)
set COMMANDLINE_ARGS=–medvram --skip-torch-cuda-test --no-half --precision full --use-cpu all
1.3 不使用v1.5SD模型
在文件目录models\Stable-diffusion
下放入另一个模型,这是为了避免之后好不容易安装完了,它提示你没有模型,好不容易下载完。
错误提示:
something went wrong
。
如果看到运行webui-user.bat
时,还是自己生成了v1.5SD模型,那么之后就删掉它。
因此要到这个下载地址https://cyberes.github.io/stable-diffusion-models/#stable-diffusion-1-4,推荐迅雷下载,下载好后放入到我提到的文件夹中。
1.4 下载rust编辑器
看到这里你肯定会疑惑了,我们不是要用python的吗?
这个我也不知道,你下了就对了,不然后面的transformers
无法安装
因为是windows到官网选择推荐的下载方式https://www.rust-lang.org/tools/install。
执行文件,输入1即可。
测试是否安装成功。
避坑2:所有的下载都必须git clone,不要本地下载
这是因为git clone下载时会自动有个node tree
,我不知道这hash值具体有什么用的,应该类似钥匙,如果本地下载后,它们就会没有这个hash值,运行webui-user.bat
时就会提示错误。
错误类似:
reference is not a tree: 24268930bf1dce879235a7fddd0b2355b84d7ea6
2.1 在完成上述步骤后,就运行webui-user.bat
等一会,等到命令行工具显示下载installing GFPGAN
时,就Ctrl+C
停止批量工具操作,这时会产生一个\venv\Scripts
的路径。
2.2 git clone命令与相应操作如下(看自己安装目录更改)
使用git bash
工具
git clone https://github.com/TencentARC/GFPGAN.git "D:\SD\venv\Scripts\GFPGAN"
之后在命令行到D:\SD\venv\Scripts\GFPGAN
输入如下的命令。
D:\SD\venv\Scripts\python.exe -m pip install basicsr facexlib
D:\SD\venv\Scripts\python.exe -m pip install -r requirements.txt
D:\SD\venv\Scripts\python.exe setup.py develop
D:\SD\venv\Scripts\python.exe -m pip install realesrgan
然后到下载open_clip
,也是同样的git bash
git clone https://github.com/mlfoundations/open_clip "D:\SD\venv\Scripts\open_clip"
命令行到D:\SD\venv\Scripts\open_clip
输入如下的命令。
D:\SD\venv\Scripts\python.exe setup.py build install
也是同样的操作到CLIP
git clone https://github.com/openai/CLIP.git "D:\SD\venv\Scripts\CLIP"
到相应的目录下,输入如下命令
D:\SD\venv\Scripts\python.exe -m pip install ftfy regex tqdm
D:\SD\venv\Scripts\python.exe setup.py build install
2.3 gitclone与安装依赖
其实操作也跟2.2类型,相应操作也是合起来如下,没有repositories
文件夹,就自己新建一个:
git clone https://github.com/Stability-AI/stablediffusion.git "D:\SD\repositories\stable-diffusion-stability-ai"
git clone https://github.com/CompVis/taming-transformers.git "D:\SD\repositories\taming-transformers"
git clone https://github.com/crowsonkb/k-diffusion.git "D:\SD\repositories\k-diffusion"
git clone https://github.com/sczhou/CodeFormer.git "D:\SD\repositories\CodeFormer"
git clone https://github.com/salesforce/BLIP.git "D:\SD\repositories\BLIP"
但是要到上面涉及到的每个目录下,检查是否有requirements.txt
文件,有就到对应目录的命令行,执行如下命令
D:\SD\venv\Scripts\python.exe -m pip install -r requirements.txt
2.4 pip transformers时,麻烦的tokenziers错误
解决方案:网络问题,试多几次(这里我用了差不多3~4h弄成功了)
尽管之前已经安装好了rust编辑器,但是它还会提示各种千奇百怪的错误,比如我下面这个。
Building wheels for collected packages: tokenizers
Building wheel for tokenizers (pyproject.toml) ... error
error: subprocess-exited-with-error
× Building wheel for tokenizers (pyproject.toml) did not run successfully.
│ exit code: 1
╰─> [62 lines of output]
running bdist_wheel
running build
running build_py
creating build
creating build\lib.win-amd64-cpython-310
creating build\lib.win-amd64-cpython-310\tokenizers
copying py_src\tokenizers\__init__.py -> build\lib.win-amd64-cpython-310\tokenizers
creating build\lib.win-amd64-cpython-310\tokenizers\models
copying py_src\tokenizers\models\__init__.py -> build\lib.win-amd64-cpython-310\tokenizers\models
creating build\lib.win-amd64-cpython-310\tokenizers\decoders
copying py_src\tokenizers\decoders\__init__.py -> build\lib.win-amd64-cpython-310\tokenizers\decoders
creating build\lib.win-amd64-cpython-310\tokenizers\normalizers
copying py_src\tokenizers\normalizers\__init__.py -> build\lib.win-amd64-cpython-310\tokenizers\normalizers
creating build\lib.win-amd64-cpython-310\tokenizers\pre_tokenizers
copying py_src\tokenizers\pre_tokenizers\__init__.py -> build\lib.win-amd64-cpython-310\tokenizers\pre_tokenizers
creating build\lib.win-amd64-cpython-310\tokenizers\processors
copying py_src\tokenizers\processors\__init__.py -> build\lib.win-amd64-cpython-310\tokenizers\processors
creating build\lib.win-amd64-cpython-310\tokenizers\trainers
copying py_src\tokenizers\trainers\__init__.py -> build\lib.win-amd64-cpython-310\tokenizers\trainers
creating build\lib.win-amd64-cpython-310\tokenizers\implementations
copying py_src\tokenizers\implementations\base_tokenizer.py -> build\lib.win-amd64-cpython-310\tokenizers\implementations
copying py_src\tokenizers\implementations\bert_wordpiece.py -> build\lib.win-amd64-cpython-310\tokenizers\implementations
copying py_src\tokenizers\implementations\byte_level_bpe.py -> build\lib.win-amd64-cpython-310\tokenizers\implementations
copying py_src\tokenizers\implementations\char_level_bpe.py -> build\lib.win-amd64-cpython-310\tokenizers\implementations
copying py_src\tokenizers\implementations\sentencepiece_bpe.py -> build\lib.win-amd64-cpython-310\tokenizers\implementations
copying py_src\tokenizers\implementations\sentencepiece_unigram.py -> build\lib.win-amd64-cpython-310\tokenizers\implementations
copying py_src\tokenizers\implementations\__init__.py -> build\lib.win-amd64-cpython-310\tokenizers\implementations
creating build\lib.win-amd64-cpython-310\tokenizers\tools
copying py_src\tokenizers\tools\visualizer.py -> build\lib.win-amd64-cpython-310\tokenizers\tools
copying py_src\tokenizers\tools\__init__.py -> build\lib.win-amd64-cpython-310\tokenizers\tools
copying py_src\tokenizers\__init__.pyi -> build\lib.win-amd64-cpython-310\tokenizers
copying py_src\tokenizers\models\__init__.pyi -> build\lib.win-amd64-cpython-310\tokenizers\models
copying py_src\tokenizers\decoders\__init__.pyi -> build\lib.win-amd64-cpython-310\tokenizers\decoders
copying py_src\tokenizers\normalizers\__init__.pyi -> build\lib.win-amd64-cpython-310\tokenizers\normalizers
copying py_src\tokenizers\pre_tokenizers\__init__.pyi -> build\lib.win-amd64-cpython-310\tokenizers\pre_tokenizers
copying py_src\tokenizers\processors\__init__.pyi -> build\lib.win-amd64-cpython-310\tokenizers\processors
copying py_src\tokenizers\trainers\__init__.pyi -> build\lib.win-amd64-cpython-310\tokenizers\trainers
copying py_src\tokenizers\tools\visualizer-styles.css -> build\lib.win-amd64-cpython-310\tokenizers\tools
running build_ext
running build_rust
cargo rustc --lib --message-format=json-render-diagnostics --manifest-path Cargo.toml --release -v --features pyo3/extension-module --crate-type cdylib --
warning: unused manifest key: target.x86_64-apple-darwin.rustflags
Updating crates.io index
warning: spurious network error (2 tries remaining): failed to send request: 鎿嶄綔瓒呮椂
; class=Os (2)
warning: spurious network error (1 tries remaining): failed to send request: 鎿嶄綔瓒呮椂
; class=Os (2)
error: failed to get `env_logger` as a dependency of package `tokenizers-python v0.10.3 (C:\Users\LENOVO\AppData\Local\Temp\pip-install-bw47mt33\tokenizers_3b1650888a634bdab4e4c98d147e7833)`
Caused by:
failed to load source for dependency `env_logger`
Caused by:
Unable to update registry `crates-io`
Caused by:
failed to fetch `https://github.com/rust-lang/crates.io-index`
Caused by:
failed to send request: 鎿嶄綔瓒呮椂
; class=Os (2)
error: `cargo rustc --lib --message-format=json-render-diagnostics --manifest-path Cargo.toml --release -v --features pyo3/extension-module --crate-type cdylib --` failed with code 101
[end of output]
note: This error originates from a subprocess, and is likely not a problem with pip.
ERROR: Failed building wheel for tokenizers
Failed to build tokenizers
后面我找了网上不少答案,发现它们的回答根本就不统一,后面我问了一下chatGPT,人家的回答如下:
说人话:chatGPT不知道为什么会这样啊?
注意:
其实就是网络问题,跟你的工具版本没关系的,你多试几次,或者找找有没有更快下载的通道
错误信息表明在安装过程中构建tokenizers
包的wheel文件出现了问题。错误发生在运行cargo rustc
命令时,该命令用于编译Rust代码。
具体的错误信息如下:
error: failed to get `env_logger` as a dependency of package `tokenizers-python v0.10.3`
这个错误表明构建过程无法获取tokenizers
包所需的env_logger
依赖项。
错误进一步说明了以下内容:
Caused by:
Unable to update registry `crates-io`
Caused by:
failed to fetch `https://github.com/rust-lang/crates.io-index`
Caused by:
failed to send request: 鎿嶄綔瓒呮椂
; class=Os (2)
这些消息表明更新注册表和获取所需的依赖项时出现了问题。错误信息failed to send request: 鎿嶄綔瓒呮椂
表明可能存在网络问题或者crates.io索引的临时问题。
以下是解决该问题的几个步骤:
-
检查网络连接:确保您拥有稳定的互联网连接,并能够访问外部资源。
-
重试安装:有时网络问题可能是暂时的。再次尝试运行安装命令,看看问题是否能够解决。
-
清除pip缓存:pip会缓存软件包以提高安装速度。然而,缓存文件有时会引发问题。您可以尝试通过运行以下命令清除pip缓存:
pip cache purge
-
指定其他软件包源:您可以尝试从其他软件包源安装该软件包。例如,您可以使用
--index-url
选项来指定另一个软件包索引:pip install --index-url https://pypi.python.org/simple/ tokenizers
-
升级pip和setuptools:过时的pip和setuptools版本有时会引发问题。尝试运行以下命令升级它们:
pip install --upgrade pip pip install --upgrade setuptools
-
安装Rust:
tokenizers
包依赖于Rust。确保您的系统上已安装Rust并且是最新版本。您可以按照官方Rust网站(https://www.rust-lang.org/tools/install)上的说明安装Rust。
如果尝试了这些步骤后问题仍然存在,建议搜索与tokenizers
包相关的类似问题或错误消息,看看是否有已知的解决方案或变通方法。您可以在论坛或问题跟踪器上寻找相关信息。
避坑3:正常运行webui-user.bat
,测试
如果它莫名其妙自己下载v1.5SD模型,就后续删掉,正常会得到如下结果,
其中Installing requirements
不用管它,过会就行了。
输入网址http://127.0.0.1:7860
,查看
如果没有在页面上出现something went wrong
那么就是成功了!
3.1 如果出现 AttributeError: 'NoneType' object has no attribute 'process_texts'
错误
回答你问题的网址https://github.com/vladmandic/automatic/issues/382
其实就是你没等SD模型加载完,就开始生图了,过会再尝试就行了