Spark大数据处理讲课笔记----Spark任务调度

news2025/1/12 1:47:13

零、本节学习目标

  1. 理解DAG概念
  2. 了解Stage划分
  3. 了解RDD在Spark中的运行流程

一、有向无环图

(一)DAG概念

  • DAG(Directed Acyclic Graph)叫做有向无环图,Spark中的RDD通过一系列的转换算子操作和行动算子操作形成了一个DAG。DAG是一种非常重要的图论数据结构。如果一个有向图无法从任意顶点出发经过若干条边回到该点,则这个图就是有向无环图。“4→6→1→2”是一条路径,“4→6→5”也是一条路径,并且图中不存在从顶点经过若干条边后能回到该点。

 

(二)实例讲解

  • 根据RDD之间依赖关系的不同可将DAG划分成不同的Stage(调度阶段)。对窄依赖来说,RDD分区的转换处理是在一个线程里完成,所以窄依赖会被Spark划分到同一个Stage中;而对宽依赖来说,由于有Shuffle存在,所以只能在父RDD处理完成后,下一个Stage才能开始接下来的计算,因此宽依赖是划分Stage的依据,当RDD进行转换操作,遇到宽依赖类型的转换操作时,就划为一个Stage。

  • A、C、E是三个RDD的实例
  • 当A做groupByKey转换操作生成B时,由于groupByKey转换操作属于宽依赖类型,所以就把A划分为一个Stage,如Stage1。
  • 当C做map转换操作生成D, D与E做union转换操作生成F。由于map和union转换操作都属于窄依赖类型,因此不进行Stage的划分,而是将C、D、E、F加入到同一个Stage中。
  • 当F与B进行join转换操作时,由于这时的join操作是非协同划分,所以属于宽依赖,因此会划分为一个Stage,如Stage2。
  • 剩下的B和G被划分为一个Stage,如Stage3。

二、Stage划分依据

  • Spark会根据DAG将整个计算划分为多个阶段,每个阶段称为一个Stage。每个Stage由多个Task任务并行进行计算,每个Task任务作用在一个分区上,一个Stage的总Task任务数量是由Stage中最后一个RDD的分区个数决定的
  • Stage的划分依据为是否有宽依赖,即是否有Shuffle。Spark调度器会从DAG图的末端向前进行递归划分,遇到Shuffle则进行划分,Shuffle之前的所有RDD组成一个Stage,整个DAG图为一个Stage。

(一)两阶段案例

  • 经典的单词计数执行流程的Stage划分如下图所示。

 

  • 上图中的依赖关系一共可以划分为两个Stage:从后向前进行递归划分,RDD3到RDD4的转换是Shuffle操作,因此在RDD3与RDD4之间划开,继续向前查找,RDD1、RDD2、RDD3之间的关系为窄依赖,因此为一个Stage;整个转换过程为一个Stage。

(二)三阶段案例

  • 下图中的依赖关系一共可以划分为3个Stage:从后向前进行递归划分,由于RDD6到RDD7的转换是Shuffle操作,因此在RDD6与RDD7之间划开,然后继续向前查找,RDD3、RDD4、RDD5、RDD6为一个Stage;由于RDD1到RDD2的转换是Shuffle操作,因此在RDD1与RDD2之间划开,然后继续向前查找,RDD1为一个Stage;整个转换过程为一个Stage。

 

三、RDD在Spark中的运行流程

  • Spark的任务调度流程,即RDD在Spark中的运行流程分为RDD Objects、DAGScheduler、TaskScheduler以及Worker四个部分。

 

(一)RDD Objects

  • 当RDD对象创建后,SparkContext会根据RDD对象构建DAG有向无环图,然后将Task提交给DAGScheduler。

(二)DAGScheduler

  • 将作业的DAG划分成不同Stage,每个Stage都是TaskSet任务集合,并以TaskSet为单位提交给TaskScheduler。

(三)TaskScheduler

  • 通过TaskSetManager管理Task,并通过集群中的资源管理器把Task发给集群中Worker的Executor。

(四)Worker

  • Spark集群中的Worker接收到Task后,把Task运行在Executor进程中,一个进程中可以有多个线程在工作,从而可以处理多个数据分区。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/561266.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

进程控制--进程的等待

回顾 之前我们已经学习了进程的状态和进程的退出如果你没有这些基础知识,应先去了解进程的相关基础知识。 这次我们主要来学习如何让进程等待子进程的退出。 为什么要等待子进程? 之前我们在学习进程的状态的时候,我们知道了进程有一种状态…

JavaEE——阻塞式队列

文章目录 一、阻塞式队列二、生产者消费者模型1.发送方和接受方之间的 “解耦合”2. “削峰填谷”保证系统稳定性3、代码实现阻塞式队列 一、阻塞式队列 阻塞式队列,顾名思义也是一个队列,这个队列遵循的是先进先出的原则。 这里简单提一个特殊的队列&…

chatgpt赋能Python-python_output用法

Python Output 用法介绍 Python 是一种非常流行的编程语言,其简单而有效的语法和丰富的功能集使其成为了各种应用程序和数据分析项目的首选工具。 Python 在输出方面有非常灵活的方式,本文将介绍 Python Output 的用法。 使用 print 函数输出 Python …

python爬虫之request库的使用(友好版)

以下所有爬取的网站都是可以爬取的,爬取时请先学学法律哦~ 如有侵权,私信删除~ 本章目录~。~ 一,request库简介: 二,requests使用方法 1.GET请求 1.1,发起一个get请求 1.2,利用GET请求发…

三、数据仓库实践-拉链表设计

1 写在开头的话 拉链表,学名叫缓慢变化维(Slowly Changing Dimensions),简称渐变维(SCD),俗称拉链表,是为了记录关键字段的历史变化而设计出来的一种数据存储模型,常见于…

蓝奏云软件库源码分享下载(后端源码)

正文: FreePlus后台管理系统是一个基于[Thinkphp]的后台管理系统,提供了基本的应用管理、用户管理 、卡密管理 、笔记管理 、邮箱管理 、商城管理 、论坛管理 、附件管理、软件库、工具箱等功能。#### 软件架构thinkphp5.1mysql实现#### 安装教程(php必…

Spark大数据处理讲课笔记--- RDD持久化机制

零、本讲学习目标 理解RDD持久化的必要性了解RDD的存储级别学会如何查看RDD缓存 一、RDD持久化 (一)引入持久化的必要性 Spark中的RDD是懒加载的,只有当遇到行动算子时才会从头计算所有RDD,而且当同一个RDD被多次使用时&#…

基于SpringBoot的家乡特色推荐系统的设计与实现

背景 设计一个家乡特色推荐系统,通过这个系统能够满足家乡特色文章的管理功能。系统的主要功能包括首页,个人中心,用户管理,文章分类管理,文章分享管理,系统管理等。 管理员可以根据系统给定的账号进行登…

堪比ChatGPT,Claude注册和使用教程

新建了一个网站 https://ai.weoknow.com/ 每天给大家更新可用的国内可用chatGPT资源 Claude简介 Claude是一款人工智能聊天机器人。主要有以下特征: 使用自己的模型与训练方法,而不是基于GPT-3等开源框架。模型采用Transformer编码器与解码器的结构,并使用对话上下文的双向…

Spark大数据处理讲课笔记---RDD容错机制

零、本讲学习目标 了解RDD容错机制理解RDD检查点机制的特点与用处理解共享变量的类别、特点与使用 一、RDD容错机制 当Spark集群中的某一个节点由于宕机导致数据丢失,则可以通过Spark中的RDD进行容错恢复已经丢失的数据。RDD提供了两种故障恢复的方式&#xff0c…

全国大学生数据统计与分析竞赛2021年【研究生组】-B题:“互联网+教育”用户消费行为分析预测模型(附获奖论文和python代码实现)

目录 摘要 1 问题重述 2 问题分析 3 符号说明 4 模型建立与求解 4.1 问题一 4.1.1 数据预处理 4.1.2 处理结果 4.2 问题二 4.2.1 城市分布情况 4.2.2 用户登录情况 4.3 问题三 4.3.1 模型建立 4.3.2 模型求解 4.3.3 模型优化 4.4 问题四 4.4.1 模型建立 4.4.…

Windows 编译 OpenCV 头疼 ? 已编译好的,你要不要吧

一、使用官方编译好的 【Qt】opencv源码&官方编译好的opencv在windows下使用的区别_外来务工人员徐某的博客-CSDN博客 官方替我们编译好了,可以直接拿来用,但是看到下面这两个文件夹就知道,官方是用msvc编译器编译的,所以还是…

2天搞定-从零开始搞-量化交易-Python 【案例A股量化交易】第一节

搭建windows电脑开发环境 一,下载并搭建python 环境 1:python 安装过程教程:https://blog.csdn.net/weixin_44727274/article/details/126017386 2:python 下载地址官网:https://www.python.org/downloads/windows/ (过程较慢耐心等待,多版本选择) 3:python 本人放…

chatgpt赋能Python-python_noj

Python NOJ - 一款适合Python学习者的在线编程环境 Python NOJ是一款在线的Python编程环境,其全称为Python Online Judge,是一款适合Python学习者使用的编程工具。接下来,我们将介绍其主要特点和优势,并探讨其与其他在线编程环境…

chatgpt赋能Python-python_nmpy

Python NumPy:提高数据科学和数学计算的效率 在数据科学和数学计算领域,Python一直是最受欢迎的语言之一。NumPy是一个优秀的Python库,它通过提供一个强大的多维数组对象和与之相关的各种函数,极大地提高了Python在数据科学和数学…

2022下半年上午题

2022下半年上午题 b b d a c d 在做加法前先用补码表示 c a d c a c b b 专利权需要申请,题目中没说公司申请了专利 c c 前向传播取大值 d 反向传播求关键路径 b b b d a c 先在前驱图中把信号量定义下去 然后定义p,v操作 然后直接看图 1:从p1出来…

Spark大数据处理讲课笔记-- 理解RDD依赖

零、本讲学习目标 理解RDD的窄依赖理解RDD的宽依赖了解两种依赖的区别 一、RDD依赖 在Spark中,对RDD的每一次转化操作都会生成一个新的RDD,由于RDD的懒加载特性,新的RDD会依赖原有RDD,因此RDD之间存在类似流水线的前后依赖关系…

CANFDCAN协议对比 - 基础介绍_02

目录 四、CAN和CANFD区别 1、保留位 2、FDF-FD格式 五、高速传输机制 1、位速率切换 (Bit Rate Switch) 2、波特率5MBit/s 3、BRS和CRC界定符之间采用更高的波特率 六、CANFD数据场 1、经典CAN中DLC:9种可能的长度 2、CANFD中DLC:16种可能的长…

ChatGPT你真的玩明白了?来试试国内免费版的ChatGPT吧!

文章目录 一、什么是ChatGPT二、ChatGPT的作用三、免费ChatGPT的使用四、写在最后 一、什么是ChatGPT ChatGPT全称为Chat Generative Pre-trained Transformer,Chat是聊天的意思,GPT是生成型预训练变换模型,可以翻译为聊天生成预训练转换器或…

抖音seo源码开发部署

抖音seo账号矩阵源码系统搭建,​ 抖音获客系统,抖音SEO优化系统源码开发,思路分享,分享一些开发的思路...... 账号矩阵霸屏系统源代码账号矩阵系统建设部署,短视频seo账号矩阵框架分析,开发语言为后台框架语言PHP pyt…