创建型模式
简单工厂模式
public class FoodFactory {
public static Food makeFood(String name) {
if (name.equals("noodle")) {
Food noodle = new LanZhouNoodle();
noodle.addSpicy("more");
return noodle;
} else if (name.equals("chicken")) {
Food chicken = new HuangMenChicken();
chicken.addCondiment("potato");
return chicken;
} else {
return null;
}
}
}
工厂模式
public interface FoodFactory {
Food makeFood(String name);
}
public class ChineseFoodFactory implements FoodFactory {
@Override
public Food makeFood(String name) {
if (name.equals("A")) {
return new ChineseFoodA();
} else if (name.equals("B")) {
return new ChineseFoodB();
} else {
return null;
}
}
}
public class AmericanFoodFactory implements FoodFactory {
@Override
public Food makeFood(String name) {
if (name.equals("A")) {
return new AmericanFoodA();
} else if (name.equals("B")) {
return new AmericanFoodB();
} else {
return null;
}
}
}
抽象工厂模式
抽象工厂的问题也是显而易见的,比如我们要加个显示器,就需要修改所有的工厂,给所有的工厂都加上制造显示器的方法。这有点违反了对修改关闭,对扩展开放这个设计原则。
*单例模式
各种优缺点对比
饿汉模式最简单:
public class Singleton {
// 首先,将 new Singleton() 堵死
private Singleton() {};
// 创建私有静态实例,意味着这个类第一次使用的时候就会进行创建
private static Singleton instance = new Singleton();
public static Singleton getInstance() {
return instance;
}
// 瞎写一个静态方法。这里想说的是,如果我们只是要调用 Singleton.getDate(...),
// 本来是不想要生成 Singleton 实例的,不过没办法,已经生成了
public static Date getDate(String mode) {return new Date();}
}
优点 | 1.线程安全 2.在类加载的同时已经创建好一个静态对象,调用时反应速度快 |
---|---|
缺点 | 资源效率不高,可能getInstance()永远不会执行到,但执行该类的其他静态方法或者加载了该类(class.forName),那么这个实例仍然初始化 |
很多人都能说出饿汉模式的缺点,可是我觉得生产过程中,很少碰到这种情况:你定义了一个单例的类,不需要其实例,可是你却把一个或几个你会用到的静态方法塞到这个类中。
饱汉模式最容易出错:
public class Singleton {
// 首先,也是先堵死 new Singleton() 这条路
private Singleton() {}
// 和饿汉模式相比,这边不需要先实例化出来,注意这里的 volatile,它是必须的
private static volatile Singleton instance = null;
public static Singleton getInstance() {
if (instance == null) { // 4:第一次检查
// 加锁
synchronized (Singleton.class) { // 5:加锁
// 这一次判断也是必须的,不然会有并发问题
if (instance == null) { // 6:第二次检查
instance = new Singleton(); // 7:实例化对象(这儿会出现问题,想一下为什么?)
}
}
}
return instance;
}
}
双重检查,指的是两次检查 instance 是否为 null。
volatile 在这里是需要的,希望能引起读者的关注。
很多人不知道怎么写,直接就在 getInstance() 方法签名上加上 synchronized,这就不多说了,性能太差。
synchronized将导致锁的获取和释放性能开销,如果getInstance()方法被多个线程频繁的调用,将会导致程序执行性能的下降。存在一个最大的问题就是:不管instance是否初始化,都会进行获取锁和释放锁操作。但实际上在我们第一次初始化对象后,是不需要在获取锁和释放锁操作的;于是双重检查锁定模式就诞生了。
乍一看上面这种Double-Checked很完美没有什么问题,但这是一个错误的优化!在线程执行到4处时,代码读取到instance不为null时,instance引用的对象有可能还没有完成初始化。问题的根源是7处的代码创建对象时,JVM内部是分三步实现的。这一行创建对象的代码在JVM中可以分解为如下的3行伪代码。
//jvm初始化对象三步实现 memory = allocate(); // 1:分配对象的内存空间 ctorInstance(memory); // 2:初始化对象 instance = memory; // 3:设置instance指向刚分配的内存地址
嵌套类最经典,以后大家就用它吧:
public class Singleton3 {
private Singleton3() {}
// 主要是使用了 嵌套类可以访问外部类的静态属性和静态方法 的特性
private static class Holder {
private static Singleton3 instance = new Singleton3();
}
public static Singleton3 getInstance() {
return Holder.instance;
}
}
最后,我们说一下枚举,枚举很特殊,它在类加载的时候会初始化里面的所有的实例,而且 JVM 保证了它们不会再被实例化,所以它天生就是单例的。
虽然我们平时很少看到用枚举来实现单例,但是在 RxJava 的源码中,有很多地方都用了枚举来实现单例。
优点 资源利用率高,不执行getInstance()不被实例,可以执行该类其他静态方法 缺点 第一次加载时反应不够快
建造者模式
经常碰见的 XxxBuilder 的类,通常都是建造者模式的产物。建造者模式其实有很多的变种,但是对于客户端来说,我们的使用通常都是一个模式的:
Food food = new FoodBuilder().a().b().c().build(); Food food = Food.builder().a().b().c().build();
class User {
// 下面是“一堆”的属性
private String name;
private String password;
private String nickName;
private int age;
// 构造方法私有化,不然客户端就会直接调用构造方法了
private User(String name, String password, String nickName, int age) {
this.name = name;
this.password = password;
this.nickName = nickName;
this.age = age;
}
// 静态方法,用于生成一个 Builder,这个不一定要有,不过写这个方法是一个很好的习惯,
// 有些代码要求别人写 new User.UserBuilder().a()...build() 看上去就没那么好
public static UserBuilder builder() {
return new UserBuilder();
}
public static class UserBuilder {
// 下面是和 User 一模一样的一堆属性
private String name;
private String password;
private String nickName;
private int age;
private UserBuilder() {
}
// 链式调用设置各个属性值,返回 this,即 UserBuilder
public UserBuilder name(String name) {
this.name = name;
return this;
}
public UserBuilder password(String password) {
this.password = password;
return this;
}
public UserBuilder nickName(String nickName) {
this.nickName = nickName;
return this;
}
public UserBuilder age(int age) {
this.age = age;
return this;
}
// build() 方法负责将 UserBuilder 中设置好的属性“复制”到 User 中。
// 当然,可以在 “复制” 之前做点检验
public User build() {
if (name == null || password == null) {
throw new RuntimeException("用户名和密码必填");
}
if (age <= 0 || age >= 150) {
throw new RuntimeException("年龄不合法");
}
// 还可以做赋予”默认值“的功能
if (nickName == null) {
nickName = name;
}
return new User(name, password, nickName, age);
}
}
}
说实话,建造者模式的链式写法很吸引人,但是,多写了很多“无用”的 builder 的代码,感觉这个模式没什么用。不过,当属性很多,而且有些必填,有些选填的时候,这个模式会使代码清晰很多。我们可以在 Builder 的构造方法中强制让调用者提供必填字段,还有,在 build() 方法中校验各个参数比在 User 的构造方法中校验,代码要优雅一些。
题外话,强烈建议读者使用 lombok,用了 lombok 以后,上面的一大堆代码会变成如下这样:
@Builder class User { private String name; private String password; private String nickName; private int age; }
原型模式
原型模式很简单:有一个原型实例,基于这个原型实例产生新的实例,也就是“克隆”了。
Object 类中有一个 clone() 方法,它用于生成一个新的对象,当然,如果我们要调用这个方法,java 要求我们的类必须先实现 Cloneable 接口,此接口没有定义任何方法,但是不这么做的话,在 clone() 的时候,会抛出 CloneNotSupportedException 异常。
总结 6种
创建型模式总体上比较简单,它们的作用就是为了产生实例对象,算是各种工作的第一步了,因为我们写的是面向对象的代码,所以我们第一步当然是需要创建一个对象了。
简单工厂模式最简单;工厂模式在简单工厂模式的基础上增加了选择工厂的维度,需要第一步选择合适的工厂;抽象工厂模式有产品族的概念,如果各个产品是存在兼容性问题的,就要用抽象工厂模式。单例模式就不说了,为了保证全局使用的是同一对象,一方面是安全性考虑,一方面是为了节省资源;建造者模式专门对付属性很多的那种类,为了让代码更优美;原型模式用得最少,了解和 Object 类中的 clone() 方法相关的知识即可。
结构型模式
前面创建型模式介绍了创建对象的一些设计模式,这节介绍的结构型模式旨在通过改变代码结构来达到解耦的目的,使得我们的代码容易维护和扩展。
代理模式
第一个要介绍的代理模式是最常使用的模式之一了,用一个代理来隐藏具体实现类的实现细节,通常还用于在真实的实现的前后添加一部分逻辑。
既然说是代理,那就要对客户端隐藏真实实现,由代理来负责客户端的所有请求。当然,代理只是个代理,它不会完成实际的业务逻辑,而是一层皮而已,但是对于客户端来说,它必须表现得就是客户端需要的真实实现。
public interface FoodService {
Food makeChicken();
Food makeNoodle();
}
public class FoodServiceImpl implements FoodService {
public Food makeChicken() {
Food f = new Chicken()
f.setChicken("1kg");
f.setSpicy("1g");
f.setSalt("3g");
return f;
}
public Food makeNoodle() {
Food f = new Noodle();
f.setNoodle("500g");
f.setSalt("5g");
return f;
}
}
// 代理要表现得“就像是”真实实现类,所以需要实现 FoodService
public class FoodServiceProxy implements FoodService {
// 内部一定要有一个真实的实现类,当然也可以通过构造方法注入
private FoodService foodService = new FoodServiceImpl();
public Food makeChicken() {
System.out.println("我们马上要开始制作鸡肉了");
// 如果我们定义这句为核心代码的话,那么,核心代码是真实实现类做的,
// 代理只是在核心代码前后做些“无足轻重”的事情
Food food = foodService.makeChicken();
System.out.println("鸡肉制作完成啦,加点胡椒粉"); // 增强
food.addCondiment("pepper");
return food;
}
public Food makeNoodle() {
System.out.println("准备制作拉面~");
Food food = foodService.makeNoodle();
System.out.println("制作完成啦")
return food;
}
}
我们发现没有,代理模式说白了就是做 “方法包装” 或做 “方法增强”。在面向切面编程中,其实就是动态代理的过程。比如 Spring 中,我们自己不定义代理类,但是 Spring 会帮我们动态来定义代理,然后把我们定义在 @Before、@After、@Around 中的代码逻辑动态添加到代理中。
说到动态代理,又可以展开说,Spring 中实现动态代理有两种,一种是如果我们的类定义了接口,如 UserService 接口和 UserServiceImpl 实现,那么采用 JDK 的动态代理,感兴趣的读者可以去看看 java.lang.reflect.Proxy 类的源码;另一种是我们自己没有定义接口的,Spring 会采用 CGLIB 进行动态代理,它是一个 jar 包,性能还不错。
适配器模式
说完代理模式,说适配器模式,是因为它们很相似,这里可以做个比较。
适配器模式做的就是,有一个接口需要实现,但是我们现成的对象都不满足,需要加一层适配器来进行适配。
适配器模式总体来说分三种:默认适配器模式、对象适配器模式、类适配器模式。先不急着分清楚这几个,先看看例子再说。
默认适配器模式
首先,我们先看看最简单的适配器模式**默认适配器模式(Default Adapter)**是怎么样的。
我们用 Appache commons-io 包中的 FileAlterationListener 做例子,此接口定义了很多的方法,用于对文件或文件夹进行监控,一旦发生了对应的操作,就会触发相应的方法。
public interface FileAlterationListener {
void onStart(final FileAlterationObserver observer);
void onDirectoryCreate(final File directory);
void onDirectoryChange(final File directory);
void onDirectoryDelete(final File directory);
void onFileCreate(final File file);
void onFileChange(final File file);
void onFileDelete(final File file);
void onStop(final FileAlterationObserver observer);
}
此接口的一大问题是抽象方法太多了,如果我们要用这个接口,意味着我们要实现每一个抽象方法,如果我们只是想要监控文件夹中的文件创建和文件删除事件,可是我们还是不得不实现所有的方法,很明显,这不是我们想要的。
所以,我们需要下面的一个适配器,它用于实现上面的接口,但是所有的方法都是空方法,这样,我们就可以转而定义自己的类来继承下面这个类即可。
public class FileAlterationListenerAdaptor implements FileAlterationListener { public void onStart(final FileAlterationObserver observer) { } public void onDirectoryCreate(final File directory) { } public void onDirectoryChange(final File directory) { } public void onDirectoryDelete(final File directory) { } public void onFileCreate(final File file) { } public void onFileChange(final File file) { } public void onFileDelete(final File file) { } public void onStop(final FileAlterationObserver observer) { } }
比如我们可以定义以下类,我们仅仅需要实现我们想实现的方法就可以了:
public class FileMonitor extends FileAlterationListenerAdaptor { public void onFileCreate(final File file) { // 文件创建 doSomething(); } public void onFileDelete(final File file) { // 文件删除 doSomething(); } }
*对象适配器模式
来看一个《Head First 设计模式》中的一个例子,我稍微修改了一下,看看怎么将鸡适配成鸭,这样鸡也能当鸭来用。因为,现在鸭这个接口,我们没有合适的实现类可以用,所以需要适配器。
public interface Duck {
public void quack(); // 鸭的呱呱叫
public void fly(); // 飞
}
public interface Cock {
public void gobble(); // 鸡的咕咕叫
public void fly(); // 飞
}
public class WildCock implements Cock {
public void gobble() {
System.out.println("咕咕叫");
}
public void fly() {
System.out.println("鸡也会飞哦");
}
}
鸭接口有 fly() 和 quare() 两个方法,鸡 Cock 如果要冒充鸭,fly() 方法是现成的,但是鸡不会鸭的呱呱叫,没有 quack() 方法。这个时候就需要适配了:
// 毫无疑问,首先,这个适配器肯定需要 implements Duck,这样才能当做鸭来用 public class CockAdapter implements Duck { Cock cock; // 构造方法中需要一个鸡的实例,此类就是将这只鸡适配成鸭来用 public CockAdapter(Cock cock) { this.cock = cock; } // 实现鸭的呱呱叫方法 @Override public void quack() { // 内部其实是一只鸡的咕咕叫 cock.gobble(); } @Override public void fly() { cock.fly(); } }
public static void main(String[] args) { // 有一只野鸡 Cock wildCock = new WildCock(); // 成功将野鸡适配成鸭 Duck duck = new CockAdapter(wildCock); ... }
类适配器模式
看到这个图,大家应该很容易理解的吧,通过继承的方法,适配器自动获得了所需要的大部分方法。这个时候,客户端使用更加简单,直接
Target t = new SomeAdapter();
就可以了。
总结
-
类适配和对象适配的异同
一个采用继承,一个采用组合;
类适配属于静态实现,对象适配属于组合的动态实现,对象适配需要多实例化一个对象。
总体来说,对象适配用得比较多。
-
适配器模式和代理模式的异同
比较这两种模式,其实是比较对象适配器模式和代理模式,在代码结构上,它们很相似,都需要一个具体的实现类的实例。但是它们的目的不一样,代理模式做的是增强原方法的活;适配器做的是适配的活,为的是提供“把鸡包装成鸭,然后当做鸭来使用”,而鸡和鸭它们之间原本没有继承关系。
桥梁模式
理解桥梁模式,其实就是理解代码抽象和解耦。
我们首先需要一个桥梁,它是一个接口,定义提供的接口方法。
public interface DrawAPI {
public void draw(int radius, int x, int y);
}
// 2
public class RedPen implements DrawAPI {
@Override
public void draw(int radius, int x, int y) {
System.out.println("用红色笔画图,radius:" + radius + ", x:" + x + ", y:" + y);
}
}
public class GreenPen implements DrawAPI {
@Override
public void draw(int radius, int x, int y) {
System.out.println("用绿色笔画图,radius:" + radius + ", x:" + x + ", y:" + y);
}
}
public class BluePen implements DrawAPI {
@Override
public void draw(int radius, int x, int y) {
System.out.println("用蓝色笔画图,radius:" + radius + ", x:" + x + ", y:" + y);
}
}
// 3
public abstract class Shape {
protected DrawAPI drawAPI;
protected Shape(DrawAPI drawAPI) {
this.drawAPI = drawAPI;
}
public abstract void draw();
}
//4
// 圆形
public class Circle extends Shape {
private int radius;
public Circle(int radius, DrawAPI drawAPI) {
super(drawAPI);
this.radius = radius;
}
public void draw() {
drawAPI.draw(radius, 0, 0);
}
}
// 长方形
public class Rectangle extends Shape {
private int x;
private int y;
public Rectangle(int x, int y, DrawAPI drawAPI) {
super(drawAPI);
this.x = x;
this.y = y;
}
public void draw() {
drawAPI.draw(0, x, y);
}
}
// 5
public static void main(String[] args) {
Shape greenCircle = new Circle(10, new GreenPen());
Shape redRectangle = new Rectangle(4, 8, new RedPen());
greenCircle.draw();
redRectangle.draw();
}
总结
前面,我们说了代理模式、适配器模式、桥梁模式、装饰模式、门面模式、组合模式和享元模式。读者是否可以分别把这几个模式说清楚了呢?在说到这些模式的时候,心中是否有一个清晰的图或处理流程在脑海里呢?
代理模式是做方法增强的,适配器模式是把鸡包装成鸭这种用来适配接口的,桥梁模式做到了很好的解耦,装饰模式从名字上就看得出来,适合于装饰类或者说是增强类的场景,门面模式的优点是客户端不需要关心实例化过程,只要调用需要的方法即可,组合模式用于描述具有层次结构的数据,享元模式是为了在特定的场景中缓存已经创建的对象,用于提高性能。
行为型模式
行为型模式关注的是各个类之间的相互作用,将职责划分清楚,使得我们的代码更加地清晰。
*策略模式
策略模式太常用了,所以把它放到最前面进行介绍。它比较简单,我就不废话,直接用代码说事吧。
下面设计的场景是,我们需要画一个图形,可选的策略就是用红色笔来画,还是绿色笔来画,或者蓝色笔来画。
public interface Strategy {
public void draw(int radius, int x, int y);
}
// 2
public class RedPen implements Strategy {
@Override
public void draw(int radius, int x, int y) {
System.out.println("用红色笔画图,radius:" + radius + ", x:" + x + ", y:" + y);
}
}
public class GreenPen implements Strategy {
@Override
public void draw(int radius, int x, int y) {
System.out.println("用绿色笔画图,radius:" + radius + ", x:" + x + ", y:" + y);
}
}
public class BluePen implements Strategy {
@Override
public void draw(int radius, int x, int y) {
System.out.println("用蓝色笔画图,radius:" + radius + ", x:" + x + ", y:" + y);
}
}
// 3
public class Context {
private Strategy strategy;
public Context(Strategy strategy){
this.strategy = strategy;
}
public int executeDraw(int radius, int x, int y){
return strategy.draw(radius, x, y);
}
}
// 4
public static void main(String[] args) {
Context context = new Context(new BluePen()); // 使用绿色笔来画
context.executeDraw(10, 0, 0);
}
观察者模式
观察者模式对于我们来说,真是再简单不过了。无外乎两个操作,观察者订阅自己关心的主题和主题有数据变化后通知观察者们。