分布式调度XXL-JOB

news2025/1/18 17:16:00

分布式调度XXL-JOB

1.概述

1.1什么是任务调度

比如:

  • 某电商平台需要每天上午10点,下午3点,晚上8点发放一批优惠券
  • 某银行系统需要在信用卡到期还款日的前三天进行短信提醒
  • 某财务系统需要在每天凌晨0:10分结算前一天的财务数据,统计汇总

以上场景就是任务调度所需要解决的问题

任务调度是为了自动完成特定任务,在约定的特定时刻去执行任务的过程

1.2 为什么需要分布式调度

使用Spring中提供的注解@Scheduled,也能实现调度的功能

在业务类中方法中贴上这个注解,然后在启动类上贴上@EnableScheduling注解

@Scheduled(cron = "0/20 * * * * ? ")
 public void doWork(){
 	//doSomething   
 }

感觉Spring给我们提供的这个注解可以完成任务调度的功能,好像已经完美解决问题了,为什么还需要分布式呢?

主要有如下这几点原因:

  1. 高可用:单机版的定式任务调度只能在一台机器上运行,如果程序或者系统出现异常就会导致功能不可用。
  2. 防止重复执行: 在单机模式下,定时任务是没什么问题的。但当我们部署了多台服务,同时又每台服务又有定时任务时,若不进行合理的控制在同一时间,只有一个定时任务启动执行,这时,定时执行的结果就可能存在混乱和错误了
  3. 单机处理极限:原本1分钟内需要处理1万个订单,但是现在需要1分钟内处理10万个订单;原来一个统计需要1小时,现在业务方需要10分钟就统计出来。你也许会说,你也可以多线程、单机多进程处理。的确,多线程并行处理可以提高单位时间的处理效率,但是单机能力毕竟有限(主要是CPU、内存和磁盘),始终会有单机处理不过来的情况。

1.3 XXL-JOB介绍

XXL-Job:是大众点评的分布式任务调度平台,是一个轻量级分布式任务调度平台, 其核心设计目标是开发迅速、学习简单、轻量级、易扩展

大众点评目前已接入XXL-JOB,该系统在内部已调度约100万次,表现优异。

目前已有多家公司接入xxl-job,包括比较知名的大众点评,京东,优信二手车,360金融 (360),联想集团 (联想),易信 (网易)等等

官网地址 https://www.xuxueli.com/xxl-job/

系统架构图

在这里插入图片描述

设计思想

将调度行为抽象形成“调度中心”公共平台,而平台自身并不承担业务逻辑,“调度中心”负责发起调度请求。

将任务抽象成分散的JobHandler,交由“执行器”统一管理,“执行器”负责接收调度请求并执行对应的JobHandler中业务逻辑。

因此,“调度”和“任务”两部分可以相互解耦,提高系统整体稳定性和扩展性;

组成

在这里插入图片描述

2.快速入门

2.1 下载源码

源码下载地址:

https://github.com/xuxueli/xxl-job

https://gitee.com/xuxueli0323/xxl-job

2.1 初始化调度数据库

请下载项目源码并解压,获取 “调度数据库初始化SQL脚本” 并执行即可。

“调度数据库初始化SQL脚本” 位置为:

/xxl-job/doc/db/tables_xxl_job.sql

2.2 编译源码

解压源码,按照maven格式将源码导入IDE, 使用maven进行编译即可,源码结构如下:

在这里插入图片描述

2.3 配置部署调度中心

2.3.1 调度中心配置

修改xxl-job-admin项目的配置文件application.properties,把数据库账号密码配置上

### web
server.port=8080
server.servlet.context-path=/xxl-job-admin

### actuator
management.server.servlet.context-path=/actuator
management.health.mail.enabled=false

### resources
spring.mvc.servlet.load-on-startup=0
spring.mvc.static-path-pattern=/static/**
spring.resources.static-locations=classpath:/static/

### freemarker
spring.freemarker.templateLoaderPath=classpath:/templates/
spring.freemarker.suffix=.ftl
spring.freemarker.charset=UTF-8
spring.freemarker.request-context-attribute=request
spring.freemarker.settings.number_format=0.##########

### mybatis
mybatis.mapper-locations=classpath:/mybatis-mapper/*Mapper.xml
#mybatis.type-aliases-package=com.xxl.job.admin.core.model

### xxl-job, datasource
spring.datasource.url=jdbc:mysql://192.168.202.200:3306/xxl_job?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&serverTimezone=Asia/Shanghai
spring.datasource.username=root
spring.datasource.password=WolfCode_2017
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver

### datasource-pool
spring.datasource.type=com.zaxxer.hikari.HikariDataSource
spring.datasource.hikari.minimum-idle=10
spring.datasource.hikari.maximum-pool-size=30
spring.datasource.hikari.auto-commit=true
spring.datasource.hikari.idle-timeout=30000
spring.datasource.hikari.pool-name=HikariCP
spring.datasource.hikari.max-lifetime=900000
spring.datasource.hikari.connection-timeout=10000
spring.datasource.hikari.connection-test-query=SELECT 1
spring.datasource.hikari.validation-timeout=1000

### xxl-job, email
spring.mail.host=smtp.qq.com
spring.mail.port=25
spring.mail.username=xxx@qq.com
spring.mail.from=xxx@qq.com
spring.mail.password=xxx
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true
spring.mail.properties.mail.smtp.starttls.required=true
spring.mail.properties.mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory

### xxl-job, access token
xxl.job.accessToken=default_token

### xxl-job, i18n (default is zh_CN, and you can choose "zh_CN", "zh_TC" and "en")
xxl.job.i18n=zh_CN

## xxl-job, triggerpool max size
xxl.job.triggerpool.fast.max=200
xxl.job.triggerpool.slow.max=100

### xxl-job, log retention days
xxl.job.logretentiondays=30

2.3.2 部署项目

运行XxlJobAdminApplication程序即可.

调度中心访问地址: http://localhost:8080/xxl-job-admin

默认登录账号 “admin/123456”, 登录后运行界面如下图所示。

在这里插入图片描述

至此“调度中心”项目已经部署成功。

2.4 配置部署执行器项目

2.4.1 添加Maven依赖

创建SpringBoot项目并且添加如下依赖:

<dependency>
    <groupId>com.xuxueli</groupId>
    <artifactId>xxl-job-core</artifactId>
    <version>2.3.1</version>
</dependency>

2.4.2 执行器配置

在配置文件中添加如下配置:

### 调度中心部署根地址 [选填]:如调度中心集群部署存在多个地址则用逗号分隔。执行器将会使用该地址进行"执行器心跳注册"和"任务结果回调";为空则关闭自动注册;
xxl.job.admin.addresses=http://127.0.0.1:8080/xxl-job-admin
### 执行器通讯TOKEN [选填]:非空时启用;
xxl.job.accessToken=default_token
### 执行器AppName [选填]:执行器心跳注册分组依据;为空则关闭自动注册
xxl.job.executor.appname=xxl-job-executor-sample
### 执行器注册 [选填]:优先使用该配置作为注册地址,为空时使用内嵌服务 ”IP:PORT“ 作为注册地址。从而更灵活的支持容器类型执行器动态IP和动态映射端口问题。
xxl.job.executor.address=
### 执行器IP [选填]:默认为空表示自动获取IP,多网卡时可手动设置指定IP,该IP不会绑定Host仅作为通讯实用;地址信息用于 "执行器注册" 和 "调度中心请求并触发任务";
xxl.job.executor.ip=127.0.0.1
### 执行器端口号 [选填]:小于等于0则自动获取;默认端口为9999,单机部署多个执行器时,注意要配置不同执行器端口;
xxl.job.executor.port=9999
### 执行器运行日志文件存储磁盘路径 [选填] :需要对该路径拥有读写权限;为空则使用默认路径;
xxl.job.executor.logpath=/data/applogs/xxl-job/jobhandler
### 执行器日志文件保存天数 [选填] : 过期日志自动清理, 限制值大于等于3时生效; 否则, 如-1, 关闭自动清理功能;
xxl.job.executor.logretentiondays=30

2.4.3 添加执行器配置

创建XxlJobConfig配置对象:

@Configuration
public class XxlJobConfig {
    @Value("${xxl.job.admin.addresses}")
    private String adminAddresses;
    @Value("${xxl.job.accessToken}")
    private String accessToken;
    @Value("${xxl.job.executor.appname}")
    private String appname;
    @Value("${xxl.job.executor.address}")
    private String address;
    @Value("${xxl.job.executor.ip}")
    private String ip;
    @Value("${xxl.job.executor.port}")
    private int port;
    @Value("${xxl.job.executor.logpath}")
    private String logPath;
    @Value("${xxl.job.executor.logretentiondays}")
    private int logRetentionDays;

    @Bean
    public XxlJobSpringExecutor xxlJobExecutor() {
        XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
        xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
        xxlJobSpringExecutor.setAppname(appname);
        xxlJobSpringExecutor.setAddress(address);
        xxlJobSpringExecutor.setIp(ip);
        xxlJobSpringExecutor.setPort(port);
        xxlJobSpringExecutor.setAccessToken(accessToken);
        xxlJobSpringExecutor.setLogPath(logPath);
        xxlJobSpringExecutor.setLogRetentionDays(logRetentionDays);
        return xxlJobSpringExecutor;
    }
}

2.4.4 添加任务处理类

添加任务处理类,交给Spring容器管理,在处理方法上贴上@XxlJob注解

@Component
public class SimpleXxlJob {
    @XxlJob("demoJobHandler")
    public void demoJobHandler() throws Exception {
        System.out.println("执行定时任务,执行时间:"+new Date());
    }
}

2.5 运行HelloWorld程序

2.5.1 任务配置&触发执行

登录调度中心,在任务管理中新增任务,配置内容如下:

在这里插入图片描述
在这里插入图片描述

新增后界面如下:

在这里插入图片描述

接着启动定时调度任务

在这里插入图片描述

2.5.2 查看日志

在调度中心的调度日志中就可以看到,任务的执行结果.

在这里插入图片描述

管控台也可以看到任务的执行信息.

在这里插入图片描述

2.6 GLUE模式(Java)

任务以源码方式维护在调度中心,支持通过Web IDE在线更新,实时编译和生效,因此不需要指定JobHandler。

( “GLUE模式(Java)” 运行模式的任务实际上是一段继承自IJobHandler的Java类代码,它在执行器项目中运行,可使用@Resource/@Autowire注入执行器里中的其他服务.

添加Service

@Service
public class HelloService {
    public void methodA(){
        System.out.println("执行MethodA的方法");
    }
    public void methodB(){
        System.out.println("执行MethodB的方法");
    }
}

添加任务配置

在这里插入图片描述

通过GLUE IDE在线编辑代码

在这里插入图片描述


编写内容如下:

package com.xxl.job.service.handler;

import cn.wolfcode.xxljobdemo.service.HelloService;
import com.xxl.job.core.handler.IJobHandler;
import org.springframework.beans.factory.annotation.Autowired;

public class DemoGlueJobHandler extends IJobHandler {
    @Autowired
    private HelloService helloService;
    @Override
    public void execute() throws Exception {
        helloService.methodA();
    }
}

启动并执行程序

2.6 执行器集群

2.6.1 集群环境搭建

在IDEA中设置SpringBoot项目运行开启多个集群

在这里插入图片描述

启动两个SpringBoot程序,需要修改Tomcat端口和执行器端口

  • Tomcat端口8090程序的命令行参数如下:

    -Dserver.port=8090 -Dxxl.job.executor.port=9998
    
  • Tomcat端口8090程序的命令行参数如下:

    -Dserver.port=8091 -Dxxl.job.executor.port=9999
    

在任务管理中,修改路由策略,修改成轮询

在这里插入图片描述

重新启动,我们可以看到效果是,定时任务会在这两台机器中进行轮询的执行

  • 8090端口的控制台日志如下:

在这里插入图片描述

  • 8091端口的控制台日志如下:

在这里插入图片描述

2.6.2 调度路由算法讲解

当执行器集群部署时,提供丰富的路由策略,包括:

  1. FIRST(第一个):固定选择第一个机器

  2. LAST(最后一个):固定选择最后一个机器;

  3. ROUND(轮询):依次的选择在线的机器发起调度

  4. RANDOM(随机):随机选择在线的机器;

  5. CONSISTENT_HASH(一致性HASH):

    每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。

  6. LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举;

  7. LEAST_RECENTLY_USED(最近最久未使用):最久未使用的机器优先被选举;

  8. FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度;

  9. BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度;

  10. SHARDING_BROADCAST(分片广播):

    广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;

3. 分片功能讲解

3.1 案例需求讲解

需求:我们现在实现这样的需求,在指定节假日,需要给平台的所有用户去发送祝福的短信.

3.1.1 初始化数据

在数据库中导入xxl_job_demo.sql数据

3.1.2 集成Druid&MyBatis

添加依赖

<!--MyBatis驱动-->
<dependency>
    <groupId>org.mybatis.spring.boot</groupId>
    <artifactId>mybatis-spring-boot-starter</artifactId>
    <version>1.2.0</version>
</dependency>
<!--mysql驱动-->
<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
</dependency>
<!--lombok依赖-->
<dependency>
    <groupId>org.projectlombok</groupId>
    <artifactId>lombok</artifactId>
    <scope>provided</scope>
</dependency>
<dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>druid</artifactId>
    <version>1.1.10</version>
</dependency>

添加配置

spring.datasource.url=jdbc:mysql://localhost:3306/xxl_job_demo?serverTimezone=GMT%2B8&useUnicode=true&characterEncoding=UTF-8
spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.type=com.alibaba.druid.pool.DruidDataSource
spring.datasource.username=root
spring.datasource.password=WolfCode_2017

添加实体类

@Setter@Getter
public class UserMobilePlan {
    private Long id;//主键
    private String username;//用户名
    private String nickname;//昵称
    private String phone;//手机号码
    private String info;//备注
}

添加Mapper处理类

@Mapper
public interface UserMobilePlanMapper {
    @Select("select * from t_user_mobile_plan")
    List<UserMobilePlan> selectAll();
}

3.1.3 业务功能实现

任务处理方法实现

@XxlJob("sendMsgHandler")
public void sendMsgHandler() throws Exception{
    List<UserMobilePlan> userMobilePlans = userMobilePlanMapper.selectAll();
    System.out.println("任务开始时间:"+new Date()+",处理任务数量:"+userMobilePlans.size());
    Long startTime = System.currentTimeMillis();
    userMobilePlans.forEach(item->{
        try {
            //模拟发送短信动作
            TimeUnit.MILLISECONDS.sleep(10);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    });
    System.out.println("任务结束时间:"+new Date());
    System.out.println("任务耗时:"+(System.currentTimeMillis()-startTime)+"毫秒");
}

任务配置信息

在这里插入图片描述

3.2 分片概念讲解

比如我们的案例中有2000+条数据,如果不采取分片形式的话,任务只会在一台机器上执行,这样的话需要20+秒才能执行完任务.

如果采取分片广播的形式的话,一次任务调度将会广播触发对应集群中所有执行器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;

获取分片参数方式:

// 可参考Sample示例执行器中的示例任务"ShardingJobHandler"了解试用 
int shardIndex = XxlJobHelper.getShardIndex();
int shardTotal = XxlJobHelper.getShardTotal();

通过这两个参数,我们可以通过求模取余的方式,分别查询,分别执行,这样的话就可以提高处理的速度.

之前2000+条数据只在一台机器上执行需要20+秒才能完成任务,分片后,有两台机器可以共同完成2000+条数据,每台机器处理1000+条数据,这样的话只需要10+秒就能完成任务

3.3 案例改造成任务分片

Mapper增加查询方法

@Mapper
public interface UserMobilePlanMapper {
    @Select("select * from t_user_mobile_plan where mod(id,#{shardingTotal})=#{shardingIndex}")
    List<UserMobilePlan> selectByMod(@Param("shardingIndex") Integer shardingIndex,@Param("shardingTotal")Integer shardingTotal);
    @Select("select * from t_user_mobile_plan")
    List<UserMobilePlan> selectAll();
}

任务类方法

@XxlJob("sendMsgShardingHandler")
public void sendMsgShardingHandler() throws Exception{
    System.out.println("任务开始时间:"+new Date());
    int shardTotal = XxlJobHelper.getShardTotal();
    int shardIndex = XxlJobHelper.getShardIndex();
    List<UserMobilePlan> userMobilePlans = null;
    if(shardTotal==1){
        //如果没有分片就直接查询所有数据
        userMobilePlans = userMobilePlanMapper.selectAll();
    }else{
        userMobilePlans = userMobilePlanMapper.selectByMod(shardIndex,shardTotal);
    }
    System.out.println("处理任务数量:"+userMobilePlans.size());
    Long startTime = System.currentTimeMillis();
    userMobilePlans.forEach(item->{
        try {
            TimeUnit.MILLISECONDS.sleep(10);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    });
    System.out.println("任务结束时间:"+new Date());
    System.out.println("任务耗时:"+(System.currentTimeMillis()-startTime)+"毫秒");
}

任务设置

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/556592.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【图床】SpringBoot上传图片

知识目录 一、写在前面✨二、新建开源仓库✨2.1 新建仓库2.2 将仓库设置为开源2.3 生产私人令牌 三、代码实现&#x1f604;3.1 工具类3.2 上传图片 四、总结撒花&#x1f60a; 一、写在前面✨ 大家好&#xff01;我是初心&#xff0c;很高兴再次和大家见面。 今天跟大家分享…

【Unity】Animation Playable Bug、限制及解决方案汇总

【Unity】Animation Playable Bug、限制及解决方案汇总 先自荐一下我的PlayableGraph监控工具&#xff0c;比官方的Visualizer好用得多&#xff1a;https://github.com/SolarianZ/UnityPlayableGraphMonitorTool Bug 文中提及的各项Bug及解决方案的最小化测试工程可在此仓库下…

基于java的竞赛预约管理信息系统的设计与实现

背景 本系统提供给管理员对首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;项目分类管理&#xff0c;竞赛项目管理&#xff0c;赛事预约管理&#xff0c;系统管理等诸多功能进行管理。本系统对于用户输入的任何信息都进行了一定的验证&#xff0c;为管理员操作提高…

2023语言与智能技术竞赛开辟“双赛道”:寻找“全民测评官”,探索AI多模态能力...

开年以来&#xff0c;人工智能大语言模型&#xff08;LLM&#xff09;掀起新一轮全球科技竞赛&#xff0c;全球科技巨头打响“百模大战”。当大语言模型正深刻改变人类生产生活方式时&#xff0c;该如何进一步释放其潜能&#xff0c;成为业界关注的问题&#xff0c;也成为了202…

计网之HTTP请求的构造

文章目录 1. form表单请求构造2. ajax请求构造3. Postman的简单使用 常见的构造 HTTP 请求的方式有以下几种: 直接通过浏览器地址栏, 输入一个 URL 就可以构造出一个 GET 请求.直接点击收藏夹, 得到的也是 GET 请求.HTML 中的一些特殊标签也会触发 GET 请求, 如: link, script…

线程池ThreadPoolExecutor底层原理源码分析

线程池执行任务的具体流程是怎样的&#xff1f; ThreadPoolExecutor中提供了两种执行任务的方法&#xff1a; void execute(Runnable command)Future<?> submit(Runnable task) 实际上submit中最终还是调用的execute()方法&#xff0c;只不过会返回⼀个Future对象&am…

【项目实战】基于Vue3+TypeScript+Pinia的后台管理系统(coderwhy)

是基于Vue3、Pinia、VueRouter、Vite、ElementPlus、TypeScript、Echarts等后台系统 效果 项目地址 https://gitee.com/yangyang993/vue3_ts_cms_admin.git 超级管理员 登录 系统总览 侧边栏是动态形成的&#xff1a;动态路由加载。路由地址路径和菜单相匹配。 注意&…

CAN总线上的报文帧类型(N_PCI)

1.四种报文类型&#xff08;简洁明了&#xff09; 请记住对于CAN报文来说&#xff0c;可以通过识别每条CAN的首个字节来确定它的类型&#xff0c;4种&#xff1a; 单帧 0 首帧 1 连续帧 2 流控帧 3 2. 单帧&#xff08;SF&#xff0c;Single Frame&#xff09; 0X 单帧首个…

【Spring MVC】后端处理多文件上传如何保持最大的灵活性

文章目录 前言找文档Spring MVC 如何接收多文件formdata 接收其他传参结论 前言 有一个多文件上传的需求&#xff0c;翻看了Spring MVC的官网&#xff0c;总结一下&#xff1a; 如何根据版本号找官方文档后端如何声明Controller能保持较好的灵活性 找文档 spring-framework…

Hive基础概论

HIVE 基础 Hive基础什么是Hive&#xff1f;为什么用Hive&#xff1f;Hive与Hadoop的关系Hive架构、组件组件用户接口元数据存储Driver驱动程序&#xff0c;包括语法解析器、计划编译器。优化器、执行器执行引擎 数据模型Data ModelDataBase 数据库Tables 表Partitions 分区Buck…

LIMUML04数据标注(note)

数据标注的思维导图 目标&#xff1a;是提升模型还是提升标注&#xff0c;本小节讨论提升标准&#xff0c;提升模型后面介绍。 如果有足够标注&#xff1a;使用半监督学习 没有足够标注&#xff0c;有足够预算&#xff1a;请人标注 没有足够预算&#xff1a;使用弱监督学习 问题…

每日学术速递5.22

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 Subjects: cs.CV 1.Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold(SIGGRAPH 2023) 标题&#xff1a;拖动你的 GAN&#xff1a;生成图像流形上基于点的交互…

基础IO(总)

接口介绍 open&#xff1a; #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> int open(const char *pathname, int flags); int open(const char *pathname, int flags, mode_t mode); pathname&#xff1a;要打开或创建的目标文件 fla…

两数之和 C++实现(力扣题目1)

给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出和为目标值 target 的那两个整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是&#xff0c;数组中同一个元素在答案里不能重复出现。 你可以按任意顺序返回答案…

SQL案例-高校信息管理系统实现要求

SQL案例-高校信息管理系统实现要求 (1) 建表 stuInfo(学生信息表) 字段名称数据类型说明stuName字符学生姓名&#xff0c;该列必填&#xff0c;要考虑姓氏可能是两个字的&#xff0c;如欧阳俊雄stuNo字符学号&#xff0c;该列必填&#xff0c;学号不能重复&#xff0c;且必须…

AC规则-4-规则和冲突解决

3.3 Introduction to Access Control Rule Conflict Resolution 3.3 访问控制规则冲突解决简介 本节从高层次讨论访问控制规则冲突解决。 本文档稍后会提供更多详细信息。 规则的优先级不是基于它在其他规则中的阅读顺序。 管理冲突规则的策略基于三个基本原则&#xff08;…

linux中 list_entry 设计背景及原理解析

Linux 2.4.22 在这一版本中的 list_entry的宏定义实现如下&#xff1a; #define list_entry(ptr, type, member) \((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))乍一看&#xff0c;会觉得特别复杂&#xff0c;其实分析之后&#xff0c;会发现清晰…

LeetCode高频算法刷题记录8

文章目录 1. 零钱兑换【中等】1.1 题目描述1.2 解题思路1.3 代码实现 2. 最小栈【最小栈】2.1 题目描述2.2 解题思路2.3 代码实现 3. 最长有效括号【困难】3.1 题目描述3.2 解题思路3.3 代码实现 4. 从前序与中序遍历序列构造二叉树【中等】4.1 题目描述4.2 解题思路4.3 代码实…

day8 域名解析与http服务器实现原理

域名解析gethostbyname函数 主机结构在 <netdb.h> 中定义如下 结构的成员包括&#xff1a; h_name &#xff1a;主机的正式名称 h_aliases&#xff1a;主机的备用名称数组&#xff0c;以 NULL 结尾指针 h_addrtype&#xff1a;地址类型;&#xff08;AF_INET或AF_INET…

基础知识6

知乎上的面试题&#xff1a;https://zhuanlan.zhihu.com/p/546032003 一、Topk问题以及变种&#xff0c;各种解法 微博的热门排行就属于 TopK 问题 TopK 一般是要求在 N 个数的集合中找到最小或者最大的 K 个值&#xff0c;通常 N 都非常得大。 算法的优点是不用在内存中读入全…