文章目录
- 前言
- 一、题目
- 二、模块初始化
- 三、代码实现
- interrupt.h:
- interrupt.c:
- main.h:
- main.c:
- 四、完成效果
- 五、总结
前言
无
一、题目
二、模块初始化
1.LCD这里不用配置,直接使用提供的资源包就行
2.ADC:开启ADCsingle-ended
3.LED:开启PC8-15,PD2输出模式就行了。
4.定时器:TIM4(按键消抖定时器):PSC:80-1,ARR:10000-1,TIM3(输入捕获定时器):PSC:80,ARR:65535,TIM2(输入捕获定时器):PSC:80,ARR:65535
5.打开串口串行输出输入
三、代码实现
bsp组中共有:
interrupt.h:
#ifndef __INTERRUPT_H__
#define __INTERRUPT_H__
#include "main.h"
#include "stdbool.h"
struct keys
{
bool key_sta;
unsigned char key_judge;
bool single_flag;
unsigned int key_time;
bool long_flag;
};
#endif
interrupt.c:
#include "interrupt.h"
#include "tim.h"
struct keys key[4] = {0, 0, 0, 0, 0};
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef * htim)
{
if(htim->Instance == TIM4)
{
key[0].key_sta = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_0);
key[1].key_sta = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1);
key[2].key_sta = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_2);
key[3].key_sta = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0);
for(unsigned char i = 0; i < 4; i++)
{
switch(key[i].key_judge)
{
case 0:
{
if(key[i].key_sta == 0)
{
key[i].key_judge = 1;
key[i].key_time = 0;
}
break;
}
case 1:
{
if(key[i].key_sta == 0)
{
key[i].key_judge = 2;
}
else
{
key[i].key_judge = 0;
}
break;
}
case 2:
{
if(key[i].key_sta == 1)
{
key[i].key_judge = 0;
if(key[i].key_time < 80)
{
key[i].single_flag = 1;
}
}
else
{
key[i].key_time++;
if(key[i].key_time >= 80)
{
key[i].long_flag = 1;
}
}
break;
}
}
}
}
}
/* Captured Values */
uint32_t uwIC2Value1_T2CH2 = 0;
uint32_t uwIC2Value2_T2CH2 = 0;
uint32_t uwHighCapture_T2CH2 = 0;
uint32_t uwLowCapture_T2CH2 = 0;
/* Capture index */
uint16_t uhCaptureIndex_T2CH2 = 0;
/* Frequency Value */
uint32_t uwFrequency_T2CH2 = 0;
double uwDuty_T2CH2 = 0;
/* Captured Values */
uint32_t uwIC2Value1_T3CH2 = 0;
uint32_t uwIC2Value2_T3CH2 = 0;
uint32_t uwHighCapture_T3CH2 = 0;
uint32_t uwLowCapture_T3CH2 = 0;
/* Capture index */
uint16_t uhCaptureIndex_T3CH2 = 0;
/* Frequency Value */
uint32_t uwFrequency_T3CH2 = 0;
double uwDuty_T3CH2 = 0;
/* Captured Values */
uint32_t uwIC1Value1_T3CH1 = 0;
uint32_t uwIC1Value2_T3CH1 = 0;
uint32_t uwHighCapture_T3CH1 = 0;
uint32_t uwLowCapture_T3CH1 = 0;
/* Capture index */
uint16_t uhCaptureIndex_T3CH1 = 0;
/* Frequency Value */
uint32_t uwFrequency_T3CH1 = 0;
double uwDuty_T3CH1 = 0;
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM2)
{
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
{
if(uhCaptureIndex_T2CH2 == 0)
{
/* Get the 1st Input Capture value */
uwIC2Value1_T2CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_2, TIM_INPUTCHANNELPOLARITY_FALLING);
uhCaptureIndex_T2CH2 = 1;
}
else if(uhCaptureIndex_T2CH2 == 1)
{
/* Get the 2nd Input Capture value */
uwIC2Value2_T2CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_2, TIM_INPUTCHANNELPOLARITY_RISING);
/* Capture computation */
if (uwIC2Value2_T2CH2 > uwIC2Value1_T2CH2)
{
uwHighCapture_T2CH2 = (uwIC2Value2_T2CH2 - uwIC2Value1_T2CH2);
}
else if (uwIC2Value2_T2CH2 < uwIC2Value1_T2CH2)
{
/* 0xFFFF is max TIM1_CCRx value */
uwHighCapture_T2CH2 = ((0xFFFFFFFF - uwIC2Value1_T2CH2) + uwIC2Value2_T2CH2) + 1;
}
else
{
/* If capture values are equal, we have reached the limit of frequency
measures */
Error_Handler();
}
uwIC2Value1_T2CH2 = uwIC2Value2_T2CH2;
uhCaptureIndex_T2CH2 = 2;
/* Frequency computation: for this example TIMx (TIM1) is clocked by
APB2Clk */
}
else if(uhCaptureIndex_T2CH2 == 2)
{
uwIC2Value2_T2CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
if (uwIC2Value2_T2CH2 > uwIC2Value1_T2CH2)
{
uwLowCapture_T2CH2 = (uwIC2Value2_T2CH2 - uwIC2Value1_T2CH2);
}
else if (uwIC2Value2_T2CH2 < uwIC2Value1_T2CH2)
{
/* 0xFFFF is max TIM1_CCRx value */
uwLowCapture_T2CH2 = ((0xFFFFFFFF - uwIC2Value1_T2CH2) + uwIC2Value2_T2CH2) + 1;
}
uwFrequency_T2CH2 = 1000000 / (uwLowCapture_T2CH2 + uwHighCapture_T2CH2);
uwDuty_T2CH2 = uwHighCapture_T2CH2 * 100.0 / (uwLowCapture_T2CH2 + uwHighCapture_T2CH2);
uhCaptureIndex_T2CH2 = 0;
}
}
}
if(htim->Instance == TIM3)
{
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
{
if(uhCaptureIndex_T3CH2 == 0)
{
/* Get the 1st Input Capture value */
uwIC2Value1_T3CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_2, TIM_INPUTCHANNELPOLARITY_FALLING);
uhCaptureIndex_T3CH2 = 1;
}
else if(uhCaptureIndex_T3CH2 == 1)
{
/* Get the 2nd Input Capture value */
uwIC2Value2_T3CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_2, TIM_INPUTCHANNELPOLARITY_RISING);
/* Capture computation */
if (uwIC2Value2_T3CH2 > uwIC2Value1_T3CH2)
{
uwHighCapture_T3CH2 = (uwIC2Value2_T3CH2 - uwIC2Value1_T3CH2);
}
else if (uwIC2Value2_T3CH2 < uwIC2Value1_T3CH2)
{
/* 0xFFFF is max TIM1_CCRx value */
uwHighCapture_T3CH2 = ((0xFFFF - uwIC2Value1_T3CH2) + uwIC2Value2_T3CH2) + 1;
}
else
{
/* If capture values are equal, we have reached the limit of frequency
measures */
Error_Handler();
}
uwIC2Value1_T3CH2 = uwIC2Value2_T3CH2;
uhCaptureIndex_T3CH2 = 2;
/* Frequency computation: for this example TIMx (TIM1) is clocked by
APB2Clk */
}
else if(uhCaptureIndex_T3CH2 == 2)
{
uwIC2Value2_T3CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
if (uwIC2Value2_T3CH2 > uwIC2Value1_T3CH2)
{
uwLowCapture_T3CH2 = (uwIC2Value2_T3CH2 - uwIC2Value1_T3CH2);
}
else if (uwIC2Value2_T3CH2 < uwIC2Value1_T3CH2)
{
/* 0xFFFF is max TIM1_CCRx value */
uwLowCapture_T3CH2 = ((0xFFFF - uwIC2Value1_T3CH2) + uwIC2Value2_T3CH2) + 1;
}
uwFrequency_T3CH2 = 1000000 / (uwLowCapture_T3CH2 + uwHighCapture_T3CH2);
uwDuty_T3CH2 = uwHighCapture_T3CH2 * 100.0 / (uwLowCapture_T3CH2 + uwHighCapture_T3CH2);
uhCaptureIndex_T3CH2 = 0;
HAL_TIM_IC_Stop_IT(&htim3, TIM_CHANNEL_2);
HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_1);
}
}
else if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1)
{
if(uhCaptureIndex_T3CH1 == 0)
{
/* Get the 1st Input Capture value */
uwIC1Value1_T3CH1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1);
__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_1, TIM_INPUTCHANNELPOLARITY_FALLING);
uhCaptureIndex_T3CH1 = 1;
}
else if(uhCaptureIndex_T3CH1 == 1)
{
/* Get the 2nd Input Capture value */
uwIC1Value2_T3CH1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1);
__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_1, TIM_INPUTCHANNELPOLARITY_RISING);
/* Capture computation */
if (uwIC1Value2_T3CH1 > uwIC1Value1_T3CH1)
{
uwHighCapture_T3CH1 = (uwIC1Value2_T3CH1 - uwIC1Value1_T3CH1);
}
else if (uwIC1Value2_T3CH1 < uwIC1Value1_T3CH1)
{
/* 0xFFFF is max TIM1_CCRx value */
uwHighCapture_T3CH1 = ((0xFFFF - uwIC1Value1_T3CH1) + uwIC1Value2_T3CH1) + 1;
}
else
{
/* If capture values are equal, we have reached the limit of frequency
measures */
Error_Handler();
}
uwIC1Value1_T3CH1 = uwIC1Value2_T3CH1;
uhCaptureIndex_T3CH1 = 2;
/* Frequency computation: for this example TIMx (TIM1) is clocked by
APB2Clk */
}
else if(uhCaptureIndex_T3CH1 == 2)
{
uwIC1Value2_T3CH1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1);
if (uwIC1Value2_T3CH1 > uwIC1Value1_T3CH1)
{
uwLowCapture_T3CH1 = (uwIC1Value2_T3CH1 - uwIC1Value1_T3CH1);
}
else if (uwIC1Value2_T3CH1 < uwIC1Value1_T3CH1)
{
/* 0xFFFF is max TIM1_CCRx value */
uwLowCapture_T3CH1 = ((0xFFFF - uwIC1Value1_T3CH1) + uwIC1Value2_T3CH1) + 1;
}
uwFrequency_T3CH1 = 1000000 / (uwLowCapture_T3CH1 + uwHighCapture_T3CH1);
uwDuty_T3CH1 = uwHighCapture_T3CH1 * 100.0 / (uwLowCapture_T3CH1 + uwHighCapture_T3CH1);
uhCaptureIndex_T3CH1 = 0;
HAL_TIM_IC_Stop_IT(&htim3, TIM_CHANNEL_1);
HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_2);
}
}
}
}
char RxBuffer[30];
unsigned char BufIndex = 0;
unsigned char Rxdat;
void HAL_UART_RxCpltCallback(UART_HandleTypeDef * huart)
{
if(huart->Instance == USART1)
{
RxBuffer[BufIndex++] = Rxdat;
HAL_UART_Receive_IT(huart, &Rxdat, 1);
}
}
main.h:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.h
* @brief : Header for main.c file.
* This file contains the common defines of the application.
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __MAIN_H
#define __MAIN_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32g4xx_hal.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Exported types ------------------------------------------------------------*/
/* USER CODE BEGIN ET */
/* USER CODE END ET */
/* Exported constants --------------------------------------------------------*/
/* USER CODE BEGIN EC */
/* USER CODE END EC */
/* Exported macro ------------------------------------------------------------*/
/* USER CODE BEGIN EM */
/* USER CODE END EM */
/* Exported functions prototypes ---------------------------------------------*/
void Error_Handler(void);
/* USER CODE BEGIN EFP */
/* USER CODE END EFP */
/* Private defines -----------------------------------------------------------*/
/* USER CODE BEGIN Private defines */
#define DATA 0
#define PARA 1
#define MODEA 0
#define MODEB 1
#define CHANNELA 0
#define CHANNELB 1
#define LIGHT 0
#define DARK 1
/* USER CODE END Private defines */
#ifdef __cplusplus
}
#endif
#endif /* __MAIN_H */
main.c:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "interrupt.h"
#include "stdio.h"
#include "lcd.h"
#include "dadc.h"
#include "ldr.h"
#include "led.h"
#include "math.h"
#include "stdlib.h"
#include "string.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
extern uint32_t uwFrequency_T2CH2;
extern double uwDuty_T2CH2;
extern uint32_t uwFrequency_T3CH2;
extern double uwDuty_T3CH2;
extern uint32_t uwFrequency_T3CH1;
extern double uwDuty_T3CH1;
char text[30];
extern struct keys key[4];
double a;
double b;
double aTemp[5] = {0};
double bTemp[5] = {0};
unsigned char TrigMode;
unsigned char Duty_should_convert;
unsigned char DisplayMode;
unsigned int Pax = 20;
unsigned int Pbx = 20;
unsigned int Pf = 1000;//a - b > 80
unsigned char LDRType[2]; // 0ÊÇ×îÐÂ
unsigned char LED;
extern char RxBuffer[30];
extern unsigned char BufIndex;
extern unsigned char Rxdat;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
void DisposeKey(void);
double Duty2Angle(double Duty, unsigned char channel);
void LCD_Disp(void);
void JudgeLDRTypeChange(void);
void LED_Control(void);
void Rx_Proc(void);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_ADC2_Init();
MX_TIM2_Init();
MX_TIM3_Init();
MX_TIM4_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
// HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_1);
HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_2);
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
getDualADC(&hadc2);
HAL_Delay(2);
getDualADC(&hadc2);
LDR_ReadAODO();//´óÓÚ3000Ëã°µ
if(trao > 3000)
LDRType[1] = DARK;
else
LDRType[1] = LIGHT;
getDualADC(&hadc2);
LDR_ReadAODO();//´óÓÚ3000Ëã°µ
if(trao > 3000)
LDRType[0] = DARK;
else
LDRType[0] = LIGHT;
HAL_TIM_Base_Start_IT(&htim4);
LCD_Init();
LCD_Clear(Black);
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
HAL_UART_Receive_IT(&huart1, &Rxdat, 1);
LED_Disp(0x00);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
getDualADC(&hadc2);
LDR_ReadAODO();//´óÓÚ3000Ëã°µ
if(TrigMode == MODEB)
JudgeLDRTypeChange();
// sprintf(text, "T2CH2F:%05d D:%.2f%%", uwFrequency_T2CH2, uwDuty_T2CH2);
// LCD_DisplayStringLine(Line0, text);
// sprintf(text, "T3CH1F:%05d D:%.2f%%", uwFrequency_T3CH1, uwDuty_T3CH1);
// LCD_DisplayStringLine(Line1, text);
// sprintf(text, "T3CH2F:%05d D:%.2f%%", uwFrequency_T3CH2, uwDuty_T3CH2);
// LCD_DisplayStringLine(Line2, text);
// sprintf(text, "trao:%04d", trao);
// LCD_DisplayStringLine(Line3, text);
if(Duty_should_convert)
{
Duty_should_convert = 0;
aTemp[4] = aTemp[3];
aTemp[3] = aTemp[2];
aTemp[2] = aTemp[1];
aTemp[1] = aTemp[0];
aTemp[0] = Duty2Angle(uwDuty_T3CH1, CHANNELA);
bTemp[4] = bTemp[3];
bTemp[3] = bTemp[2];
bTemp[2] = bTemp[1];
bTemp[1] = bTemp[0];
bTemp[0] = Duty2Angle(uwDuty_T3CH2, CHANNELB);
}
if(BufIndex != 0)
{
unsigned char Temp = BufIndex;
HAL_Delay(1);
if(Temp == BufIndex)
{
Rx_Proc();
}
}
DisposeKey();
LCD_Disp();
LED_Control();
LED_Disp(LED);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV3;
RCC_OscInitStruct.PLL.PLLN = 20;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
void DisposeKey(void)
{
if(key[0].single_flag)
{
LCD_Clear(Black);
DisplayMode = !DisplayMode;
key[0].single_flag = 0;
}
if(key[1].single_flag)
{
if(DisplayMode == PARA)
{
Pax += 10;
Pbx += 10;
if(Pax == 70)
Pax = 10;
if(Pbx == 70)
Pbx = 10;
}
key[1].single_flag = 0;
}
if(key[2].single_flag)
{
if(DisplayMode == PARA)
{
Pf += 1000;
if(Pf == 11000)
Pf = 1000;
}
if(DisplayMode == DATA)
{
TrigMode = !TrigMode;
}
key[2].single_flag = 0;
}
if(key[3].single_flag)
{
if(TrigMode == MODEA)
{
Duty_should_convert = 1;
}
key[3].single_flag = 0;
}
}
void LCD_Disp(void)
{
if(DisplayMode == DATA)
{
LCD_DisplayStringLine(Line1, " DATA");
sprintf(text, " a:%.1f", aTemp[0]);
LCD_DisplayStringLine(Line2, text);
sprintf(text, " b:%.1f", bTemp[0]);
LCD_DisplayStringLine(Line3, text);
sprintf(text, " f:%dHz ", uwFrequency_T2CH2);
LCD_DisplayStringLine(Line4, text);
// sprintf(text, "aDuty%.2f", uwDuty_T3CH1);
// LCD_DisplayStringLine(Line5, text);
sprintf(text, " ax:%d ", (unsigned int)(fabs(aTemp[1] - aTemp[0])));
LCD_DisplayStringLine(Line6, text);
sprintf(text, " bx:%d ", (unsigned int)(fabs(bTemp[1] - bTemp[0])));
LCD_DisplayStringLine(Line7, text);
sprintf(text, " mode:%c", 'A' + TrigMode);
LCD_DisplayStringLine(Line8, text);
}
if(DisplayMode == PARA)
{
LCD_DisplayStringLine(Line1, " PARA");
sprintf(text, " Pax:%d ", Pax);
LCD_DisplayStringLine(Line2, text);
sprintf(text, " Pbx:%d ", Pbx);
LCD_DisplayStringLine(Line3, text);
sprintf(text, " Pf:%d ", Pf);
LCD_DisplayStringLine(Line4, text);
}
}
void Rx_Proc(void)
{
if(BufIndex == 2)
{
if(RxBuffer[0] == 'a' && RxBuffer[1] == '?')
{
printf("a:%.1f\r\n", aTemp[0]);
}
else if(RxBuffer[0] == 'b' && RxBuffer[1] == '?')
{
printf("b:%.1f\r\n", bTemp[0]);
}
else
printf("error\r\n");
}
else if(BufIndex == 3)
{
if(RxBuffer[0] == 'a' && RxBuffer[1] == 'a' && RxBuffer[2] == '?')
{
printf("aa:%.1f-%.1f-%.1f-%.1f-%.1f\r\n", aTemp[4], aTemp[3], aTemp[2], aTemp[1], aTemp[0]);
}
else if(RxBuffer[0] == 'b' && RxBuffer[1] == 'b' && RxBuffer[2] == '?')
{
printf("bb:%.1f-%.1f-%.1f-%.1f-%.1f\r\n", bTemp[4], bTemp[3], bTemp[2], bTemp[1], bTemp[0]);
}
else if(RxBuffer[0] == 'q' && RxBuffer[1] == 'a' && RxBuffer[2] == '?')
{
double temp[5];
double _, __;
temp[0] = aTemp[0];
temp[1] = aTemp[1];
temp[2] = aTemp[2];
temp[3] = aTemp[3];
temp[4] = aTemp[4];
// temp[0] = 4;
// temp[1] = 7;
// temp[2] = 10;
// temp[3] = 5;
// temp[4] = 8;
for(unsigned char i = 0; i < 5; i++)
{
for(unsigned char j = i+1; j < 5; j++)
{
if(temp[i] >= temp[j])
{
_ = temp[i];
__ = temp[j];
temp[i] = __;
temp[j] = _;
}
}
}
printf("qa:%.1f-%.1f-%.1f-%.1f-%.1f\r\n", temp[0], temp[1], temp[2], temp[3], temp[4]);
}
else if(RxBuffer[0] == 'q' && RxBuffer[1] == 'b' && RxBuffer[2] == '?')
{
double temp[5];
double _, __;
temp[0] = bTemp[0];
temp[1] = bTemp[1];
temp[2] = bTemp[2];
temp[3] = bTemp[3];
temp[4] = bTemp[4];
// temp[0] = 4;
// temp[1] = 7;
// temp[2] = 10;
// temp[3] = 5;
// temp[4] = 8;
for(unsigned char i = 0; i < 5; i++)
{
for(unsigned char j = i+1; j < 5; j++)
{
if(temp[i] >= temp[j])
{
_ = temp[i];
__ = temp[j];
temp[i] = __;
temp[j] = _;
}
}
}
printf("qb:%.1f-%.1f-%.1f-%.1f-%.1f\r\n", temp[0], temp[1], temp[2], temp[3], temp[4]);
}
else
printf("error\r\n");
}
else
printf("error\r\n");
memset(RxBuffer, 0, 30);
BufIndex = 0;
}
double Duty2Angle(double Duty, unsigned char channel)
{
if(channel == CHANNELA)
{
if(Duty < 10.0)
{
return 0;
}
else if(Duty >= 10.0 && Duty <= 90.0) //(10, 0),(90, 180) k = (180.0 / 80.0) y1 = k * x1 + b ->b = y1 - k * x1 = 0 - (180.0 / 80.0) * 10 = -180.0 / 8.0
{
return ((180.0 / 80.0) * Duty - 180.0 / 8.0);
}
else if(Duty > 90.0)
{
return 180.0;
}
else
return (-1);
}
else if(channel == CHANNELB)
{
if(Duty < 10.0)
{
return 0;
}
else if(Duty >= 10.0 && Duty <= 90.0) //(10, 0),(90, 90) k = (90.0 / 80.0) b = - 90.0 / 8.0
{
return ((90.0 / 80.0) * Duty - 90.0 / 8.0);
}
else if(Duty > 90.0)
{
return 90.0;
}
else
return (-1);
}
else
return (-1);
}
void JudgeLDRTypeChange(void)
{
if(trao > 3000)
{
LDRType[1] = LDRType[0];
LDRType[0] = DARK;
if(LDRType[1] == LIGHT)
Duty_should_convert = 1;
}
else
{
LDRType[1] = LDRType[0];
LDRType[0] = LIGHT;
}
}
void LED_Control(void)
{
if((unsigned int)(fabs(aTemp[0] - aTemp[1])) > Pax)
{
LED = LED & 0xfe | 0x01;
}
else
{
LED = LED & 0xfe;
}
if((unsigned int)(fabs(bTemp[0] - bTemp[1])) > Pbx)
{
LED = LED & 0xfd | 0x02;
}
else
{
LED = LED & 0xfd;
}
if(uwFrequency_T2CH2 > Pf)
{
LED = LED & 0xfb | 0x04;
}
else
{
LED = LED & 0xfb;
}
if(TrigMode == MODEA)
{
LED = LED & 0xf7 | 0x08;
}
else
{
LED = LED & 0xf7;
}
if(aTemp[0] - bTemp[0] > 80.0 && aTemp[0] - bTemp[0] < 100.0)
{
LED = LED & 0xef | 0x10;
}
else
{
LED = LED & 0xef;
}
}
int fputc(int ch, FILE *f)
{
HAL_UART_Transmit(&huart1, (unsigned char *)&ch, 1, HAL_MAX_DELAY);
return ch;
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
四、完成效果
蓝桥杯嵌入式第十二届国赛试题实现效果
五、总结
本篇文章只是为了存放我的代码,所以看不懂很正常,如果需要代码可以找我私信。