redis 高可用与优化

news2025/1/12 18:07:04

一、Redis高可用
在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。
但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。

在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和 Cluster集群,下面分别说明它们的作用,以及解决了什么样的问题。

持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。
Cluster集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。
二、Redis 持久化
持久化的功能:Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。

2.1 Redis 提供两种方式进行持久化
RDB 持久化:原理是将 Reids在内存中的数据库记录定时保存到磁盘上。
AOF 持久化(append only file):原理是将 Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。
由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地。

2.2 RDB持久化
RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。

2.2-1 触发条件
RDB持久化的触发分为手动触发和自动触发两种。

1、手动触发

save命令和bgsave命令都可以生成RDB文件。
save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。
而bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。
bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。
2、自动触发

在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化。

其他自动触发机制
除了save m n 以外,还有一些其他情况会触发bgsave:
●在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
●执行shutdown命令时,自动执行rdb持久化。

2.2-2 执行流程
Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行bgsave命令直接返回。 bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。
父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令
子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
子进程发送信号给父进程表示完成,父进程更新统计信息

 

2.2-3 启动时加载
RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;只有当AOF关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。
Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。

2.3 AOF 持久化
RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当Redis重启时再次执行AOF文件中的命令来恢复数据。
与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案。

 

2.3.2 执行流程
由于需要记录Redis的每条写命令,因此AOF不需要触发,下面介绍AOF的执行流程。

AOF的执行流程包括:

命令追加(append):将Redis的写命令追加到缓冲区aof_buf;
文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
文件重写(rewrite):定期重写AOF文件,达到压缩的目的。
(1)命令追加(append)
Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。
命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。

(2)文件写入(write)和文件同步(sync)
Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:
为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。

 

 

(3)文件重写(rewrite)
随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。

文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!

关于文件重写需要注意的另一点是:对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些现实中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。

文件重写之所以能够压缩AOF文件,原因在于:

过期的数据不再写入文件
无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(set myset v1, del myset)等。
多条命令可以合并为一个:如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。
通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。

文件重写的触发,分为手动触发和自动触发:

手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
自动触发:通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。 只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。

 

关于文件重写的流程,有两点需要特别注意:
(1) 重写由父进程fork子进程进行;
(2) 重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。

文件重写的流程如下:
(1)Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2)由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
(4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的AOF文件替换老文件,完成AOF重写。

2.3.3 执行流程启动时加载
当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。
当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载。
Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的。

三、RDB和AOF的优缺点
RDB持久化
优点:RDB文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比AOF快很多。当然,与AOF相比,RDB最重要的优点之一是对性能的影响相对较小。

缺点:RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持久化成为主流。此外,RDB文件需要满足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)。
对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,另一方面,子进程向硬盘写数据也会带来IO压力。

AOF持久化
与RDB持久化相对应,AOF的优点在于支持秒级持久化、兼容性好,缺点是文件大、恢复速度慢、对性能影响大。
对于AOF持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO压力更大,甚至可能造成AOF追加阻塞问题。
AOF文件的重写与RDB的bgsave类似,会有fork时的阻塞和子进程的IO压力问题。相对来说,由于AOF向硬盘中写数据的频率更高,因此对 Redis主进程性能的影响会更大。

四、Redis 性能管理
4.1 查看Redis内存使用
192.168.9.236:7001> info memory
1
4.2 内存碎片率
mem_fragmentation_ratio:内存碎片率。mem_fragmentation_ratio = used_memory_rss / used_memory
used_memory_rss:是Redis向操作系统申请的内存。
used_memory:是Redis中的数据占用的内存。
used_memory_peak:redis内存使用的峰值。
4.3 内存碎片如何产生的?
Redis内部有自己的内存管理器,为了提高内存使用的效率,来对内存的申请和释放进行管理。
Redis中的值删除的时候,并没有把内存直接释放,交还给操作系统,而是交给了Redis内部有内存管理器。
Redis中申请内存的时候,也是先看自己的内存管理器中是否有足够的内存可用。
Redis的这种机制,提高了内存的使用率,但是会使Redis中有部分自己没在用,却不释放的内存,导致了内存碎片的发生。
4.4 跟踪内存碎片率对理解Redis实例的资源性能是非常重要的
内存碎片率在1到1.5之间是正常的,这个值表示内存碎片率比较低,也说明 Redis 没有发生内存交换。
内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。
内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少 Redis内存占用。
4.5 解决碎片率大的问题
如果你的Redis版本是4.0以下的,需要在 redis-cli 工具上输入 shutdown save 命令,让 Redis 数据库执行保存操作并关闭 Redis 服务,再重启服务器。Redis服务器重启后,Redis会将没用的内存归还给操作系统,碎片率会降下来。

Redis4.0版本开始,可以在不重启的情况下,线上整理内存碎片。
config set activedefrag yes #自动碎片清理,内存就会自动清理了。
memory purge #手动碎片清理

4.6 内存使用率
redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。

4.7 避免内存交换发生的方法
针对缓存数据大小选择安装 Redis 实例
尽可能的使用Hash数据结构存储
设置key的过期时间
4.8 内回收key
内存数据淘汰策略,保证合理分配redis有限的内存资源。

当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。
配置文件中修改 maxmemory-policy 属性值:

 

五、redis 优化
5.1 redis 优化
开启 AOF 持久化
设置 config set activedefrag yes 开启内存碎片自动清理,或者 定时执行 memory purge 清理内存碎片
设置 内存数据淘汰策略 maxmemory-policy 实现保证内存使用率不超过系统最大内存
maxmemory设置redis占用最大内存值,maxmemory-samples设置淘汰策略算法的样本数量
尽可能使用 Hash 数据类型存储数据,如果 Hash 中包含很少的字段,那么该类型的数据也将仅占用很少的空间
设置 key 的过期时间,精简键名 和 键值,控制键值的大小
设置 config set requirepass 开启密码验证
合理设置 maxclient 最大连接数参数(10000),tcp-backlog 连接排队数(1024), timeout 连接超时时间(30000)
部署主从复制,备份数据,采用哨兵或集群方案实现高可用

5.2 缓存和数据库双写一致性问题
先更新数据库,然后再删除缓存 + 缓存做过期时间,数据过期后再有读请求可从数据库直接更新缓存

5.3 缓存雪崩
缓存同一时间大面积的过期失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉。

解决方案:
缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生。
一般并发量不是特别多的时候,使用最多的解决方案是加锁排队。
给每一个缓存数据增加相应的缓存标记,记录缓存的是否失效,如果缓存标记失效,则更新数据缓存。

5.4 缓存击穿
缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大,造成过大压力。
和缓存雪崩不同的是,缓存击穿指并发查同一条数据,缓存雪崩是不同数据都过期了,很多数据都查不到从而查数据库。

解决方案
设置热点数据永远不过期。
加互斥锁,互斥锁。

5.5 缓存穿透
缓存和数据库中都没有的数据,导致所有的请求都落到数据库上,造成数据库短时间内承受大量请求而崩掉。

解决方案:
接口层增加校验,如用户鉴权校验,id做基础校验,id<=0的直接拦截;
从缓存取不到的数据,在数据库中也没有取到,这时也可以将key-value对写为key-null,缓存有效时间可以设置短点,如30秒(设置太长会导致正常情况也没法使用)。这样可以防止攻击用户反复用同一个id暴力攻击
采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的 bitmap 中,一个一定不存在的数据会被这个 bitmap 拦截掉,从而避免了对底层存储系统的查询压力。

 七、 Redis做过哪些优化?(面试题)
重启AOF持久化
设置Redis密码
开启内存碎片清理
使用哈希做数据类型,占用空间小
设置内存的最大占用值
设置键的回收策略
设置最大连接数
八、排查redis占用内存高的排查方法?
1、登陆服务器,查看tcp连接数
netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'
1
查看已经建立的连接数,即ESTABLISHED的数量,发现大多数建立的ESTABLISHED连接是java和redis之间的TCP连接。
运行config get maxclients命令,查看redis的最大连接数,如果上述命令获取的连接数远大于redis自身的允许的最大最大连接数,说明过多的连接导致redis内存占用高。
查看监控,流量正常,也没有突发大流量进入。那很有可能是TCP连接后没有释放,找开发检查代码,是否存在方法获取redis的key后,没有close。增加关闭redis连接的代码即可。
2、查看redis是否存在过多空闲键
3、分析redis基本的内存信息
连接redis后,使用info memory命令查看redis内存的基本信息
查看每个db key的数量
查询redis已经连接的客户端数
查看单个redis key占用的空间
 redis-memory-for-key -s ${host} -p ${port} key_name
1
如果redis是用的集群,找到key的槽位所在的节点,port用对应的节点即可。 寻找占用内存过高的key 。
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/551771.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

成绩管理系统

系列文章 任务28 成绩管理系统 文章目录 系列文章一、实践目的与要求1、目的2、要求 二、课题任务三、总体设计1.存储结构及数据类型定义2.程序结构3.所实现的功能函数4、程序流程图 四、小组成员及分工五、 测试读入数据浏览全部信息增加学生信息保存数据删除学生信息修改学生…

加密与解密 基础篇/win API/小端序大端序

1.1加密和解密的概念 是侧重于windows 的加密保护和解密技术 首先我们先要了解 软件逆向工程 可执行程序->反编译->源代码这就是逆向工程 接着 逆向分析技术是什么 静态调试 和动态调试 主要分为这俩类1.通过软件的执行 来分析程序 我们可以通过阅读程序的执行 或…

这个Set接口真牛逼

偶然间看到 java.util 包下的 Set 接口&#xff0c;看着好搞笑哈哈哈哈哈哈哈 包括了如下几个方法&#xff1a; 创建包含0个元素的不可修改的Set集合创建包含1个元素的不可修改的Set集合创建包含2个元素的不可修改的Set集合创建包含3个元素的不可修改的Set集合创建包含4个元素…

ROS:laser激光雷达数据格式、发送laser数据、订阅laser数据

一.激光雷达数据格式 图片来源&#xff1a;ROS-订阅与处理激光雷达scan话题_ros激光雷达数据处理_zhhao1326的博客-CSDN博客 # 测量的激光扫描角度&#xff0c;逆时针为正 # 设备坐标帧的0度面向前&#xff08;沿着X轴方向&#xff09; Header header # Header也是一…

Java学习路线(8)——面向对象基础(2)

一、static关键字 概念&#xff1a; static是静态的意思&#xff0c;可以修饰成员变量和成员方法。当修饰成员变量时&#xff0c;在内存中只存储一份&#xff0c;可以被共享访问、修改。当修饰成员方法时&#xff0c;可以被共享访问&#xff0c;也被称为公共方法。 静态成员变…

【linux网络】防火墙规则二:SNAT策略与DNAT策略

防火墙规则 一、SNAT策略1.1SANT的原理与应用1.2SNAT实验 二、DNAT策略2.1DNAT的原理与应用2.2DNAT实验 三、Linux的抓包工具tcpdump3.1补充知识 四、防火墙规则的备份和还原 一、SNAT策略 1.1SANT的原理与应用 SNAT 应用环境&#xff1a;局域网主机共享单个公网IP地址接入In…

2023.05.21 学习周报

文章目录 摘要文献阅读1.题目2.背景3.现存问题和解决方法4.方法4.1 Variational mode decomposition (VMD)4.2 Bidirectional LSTM 5.实验5.1 数据标准化5.2 评价指标5.3 实验过程及结果 6.结论和展望 优劣解距离法有限元1.求解一个简单的传热问题2.有限元如何实现 总结 摘要 …

vscode远程到服务器(包括WSL)进行GDB调试

工欲善其事必先利其器&#xff0c;这句话不容小觑&#xff0c;调试工具做的好&#xff0c;对开发工作可起到事半功倍。 本文主要讲vscode远程到服务器进行在线GDB调试手段&#xff0c;包含对WSL的远程调试&#xff0c;可以轻松对照源码进行应用程序调试。 文章目录 一、vscode…

【SpringCloud】一、认识微服务

文章目录 1、学习提纲2、和单体架构的比较3、认识微服务4、微服务技术常用框架5、SprigCloud6、服务拆分7、微服务远程调用 1、学习提纲 相比传统单体架构&#xff0c;微服务的整体架构如下图&#xff1a; 再引入日志、监控、持续集成、持续部署&#xff0c;就成了下面这个图&…

RocketMQ 的介绍和基本使用

介绍 在 RabbitMQ 的基本概念和五种模式使用示例 前半部分介绍了 MQ 的应用场景&#xff0c;以及多个 MQ 产品的对比&#xff0c;那时说到 RocketMQ 的客户端版本只有 Java , 现在 Apache RocketMQ 社区中也增加了 C NodeJS Python Go 的客户端。 RocketMQ 是阿里巴巴开源的一…

iOS正确获取图片参数深入探究及CGImageRef的使用(附源码)

一 图片参数的正确获取 先拿一张图片作为测试使用 图片参数如下&#xff1a; 图片的尺寸为&#xff1a; -宽1236个像素点 -高748个像素点 -色彩空间为RGB -描述文件为彩色LCD -带有Alpha通道 请记住这几个参数&#xff0c;待会儿我们演示如何正确获取。 将这张图片分别放在…

从零开始 Spring Boot 32:AOP II

从零开始 Spring Boot 32&#xff1a;AOP II 图源&#xff1a;简书 (jianshu.com) 之前写过一篇文章从零开始 Spring Boot 26&#xff1a;AOP - 红茶的个人站点 (icexmoon.cn)&#xff0c;讨论了AOP的基本用法&#xff0c;但那篇文章相当粗疏&#xff0c;对Spring中的AOP技术讨…

免费快速部署ChatGPT线上聊天网页:ChatGPT API + Github + Railway

1、使用工具 &#xff08;1&#xff09;需要自己生成的openai api&#xff0c;获取API的网站&#xff1a;openAI API 获取方式&#xff1a;OpenAI的API key获取方法 &#xff08;2&#xff09;本次使用该参考项目进行部署&#xff1a;chatweb 需要将该项目fork到自己的仓库里 …

29 SQL——事务操作

create table account (id int auto_increment primary key comment 主键ID,name varchar(18) comment 姓名,money int comment 余额 )comment 账户表;insert into account(id, name ,money)values(null,张三,2000),(nul…

不定积分题型简单总结

不定积分 考研数学复习笔记&#xff0c;用来复习知识点用&#xff0c;如有不足还请指出&#xff0c;Thanks♪(&#xff65;ω&#xff65;)&#xff89; 文章目录 不定积分1 原函数/不定积分 概念和性质2 原函数存在定理3 不定积分的基本公式4 不定积分的基本计算4.1 三角代换型…

中间件-RabbitMQ

文章目录 1.什么是MQ1.1 特点1.2 MQ产品分类 2.RabbitMQ2.1.RabbitMQ介绍2.2.使用Docker安装RabbitMQ 3.SpringBoot中使用RabbitMQ3.1.SpringAMQP3.2使用步骤 1.什么是MQ RabbitMQ官方文档 消息队列(Message Queue&#xff0c;简称MQ)&#xff1a;是在消息的传输过程中保存消…

SpringBoot+Vue实现校园二手系统。前后端分离技术【完整功能介绍+实现详情+源码】

前言 文章内容有点长&#xff0c;建议打开右侧目录导航栏查看。 这个系统基本上可以改造为其它类似的系统。后台管理基本上一致。前台进行一些页面样式的改造就可以变成一个新的系统。有时间&#xff0c;做几个变体系统。 闲的无聊&#xff0c;把大学时候做的一个系统进行了重…

git源代码管理

文章目录 git源代码管理git单人本地仓库操作创建远程仓库&#xff08;github为例&#xff09;多人开发与冲突分支操作SSH&#xff08;安全外壳协议&#xff09; git源代码管理 文档连接&#xff1a;https://git-scm.com/docs git是用于源代码管理&#xff0c;方便多人协同开发…

架构整洁之道上篇(编程范式设计原则)

目录 1.概述 2.编程范式 2.1.结构化编程 2.2.面向对象编程 2.3.函数式编程 3.设计原则 3.1.单一职责原则 3.2.开闭原则 3.3.里氏替换原则 3.4.接口隔离原则 3.5.依赖反转原则 4.小结 1.概述 软件架构的终极目标是&#xff0c;用最小的人力成本来满足构建和维护该系…

2023 操作系统 R 复习大纲( 适用于太理软件 21 级)

目录 01.操作系统的定义 02.操作系统的基本类型及特征 1.批处理操作系统&#xff08;单、多道&#xff09; 2.分时操作系统 3.实时操作系统 03.操作系统的功能及特征 04.进程的定义、特征 05.进程基本状态及其转换原因 06.进程互斥、同步 07.进程控制块的内容、作用 …