中断
中断是外围设备通知处理器的一种机制。
1. 中断控制器
外围设备不是把中断请求直接发送给处理器,而是发给中断控制器,由中断控制器转发给处理器。
不同种类的中断控制器的访问方法存在差异,为了屏蔽差异,内核定义了中断控制器描述符irq_chip,每种中断控制器自定义各种操作函数。GIC v2控制器的描述符如下:
drivers/irqchip/irq-gic.c
tatic const struct irq_chip gic_chip = {
.irq_mask = gic_mask_irq,
.irq_unmask = gic_unmask_irq,
.irq_eoi = gic_eoi_irq,
.irq_set_type = gic_set_type,
.irq_get_irqchip_state = gic_irq_get_irqchip_state,
.irq_set_irqchip_state = gic_irq_set_irqchip_state,
.flags = IRQCHIP_SET_TYPE_MASKED |
IRQCHIP_SKIP_SET_WAKE |
IRQCHIP_MASK_ON_SUSPEND,
};
2. 中断域
一个大型系统可能有多个中断控制器,这些中断控制器可以级联,一个中断控制器作为中断源连接到另一个中断控制器,但只有一个中断控制器作为根控制器直接连接到处理器。为了把每个中断控制器本地的硬件中断映射到全局唯一的Linux中断号(也称为虚拟中断),内核定义了中断域irq_domain,每个中断控制器由自己的中断域。
2.1. 创建中断域
中断控制器的驱动程序使用分配函数irq_domain_add_*()创建和注册中断域。
2.2. 创建映射
创建中断域以后,需要向中断域添加硬件中断号到Linux中断号的映射,内核提供了函数irq_create_mapping:
unsigned int irq_create_mapping(struct irq_domain *host, irq_hw_number_t hwirq);
输入参数是中断域和硬件中断号,返回Linux中断号。
该函数首先分配Linux中断号,然后把硬件中断号到Linux中断号的映射添加到中断域。
2.3. 查找映射
中断处理程序需要根据硬件中断号查找Linux中断号,内核提供了函数irq_find_mapping:
unsigned int irq_find_mapping(struct irq_domain *host, irq_hw_number_t hwirq);
输入参数是中断域和硬件中断号,返回Linux中断号。
【文章福利】小编推荐自己的Linux内核技术交流群:【977878001】整理一些个人觉得比较好得学习书籍、视频资料共享在群文件里面,有需要的可以自行添加哦!!!前100进群领取,额外赠送一份价值699的内核资料包(含视频教程、电子书、实战项目及代码)
内核资料直通车:Linux内核源码技术学习路线+视频教程代码资料
学习直通车:Linux内核源码/内存调优/文件系统/进程管理/设备驱动/网络协议栈
3. 中断控制器驱动初始化
3.1. 设备树源文件
ARM64架构使用扁平设备树(Flattened Device Tree,FDT)描述板卡的硬件信息,好处是可以把板卡的特定的代码从内核中删除,编译生成通用的板卡无关的内核。
设备树源文件是文本文件,扩展名是“.dts”,需要在设备树源文件中描述中断的相关信息:
(1)中断控制器的信息
(2)对于作为中断源的外围设备,需要描述设备连接到哪个中断控制器,使用哪个硬件中断号
3.2. 中断控制器匹配表
在GIC v2控制器的驱动程序中,定义了多个类型为of_device_id的静态变量,成员compatible是驱动程序支持的设备的名称,成员data是初始化函数,编译器把这些静态变量放在专用的节“__irqchip_of_table”里面。
我们把节“__irqchip_of_table”称为中断控制器匹配表,里面每个表项的格式是结构体of_device_id。
drivers/irqchip/irq-gic.c
IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
...
IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
...
把宏IRQCHIP_DECLARE展开以后是:
static const struct of_device_id __of_table_cortex_gic_400
__section(__irqchip_of_table)
= { .compatible = "arm,gic-g400",
.data = gic_of_init }
...
static const struct of_device_id __of_table_cortex_a15_gic
__section(__irqchip_of_table)
= { .compatible = "arm,cortex-a15-gic",
.data = gic_of_init }
static const struct of_device_id __of_table_cortex_a9_gic
__section(__irqchip_of_table)
= { .compatible = "arm,cortex-a9-gic",
.data = gic_of_init }
...
3.3. 初始化
在内核初始化的时候,匹配设备树文件中的中断控制器的属性“compatible”和内核的中断控制器匹配表,找到合适的中断控制器驱动程序,执行驱动程序的初始化函数。
start_kernel() -> init_IRQ() -> irqchip_init()
drivers/irqchip/irqchip.c
void __init irqchip_init(void)
{
of_irq_init(__irqchip_of_table); // 参数是中断控制器匹配表的起始地址__irqchip_of_table
...
}
(1)函数of_irq_init
driver/of/irq.c
/**
* of_irq_init - Scan and init matching interrupt controllers in DT
* @matches: 0 terminated array of nodes to match and init function to call
*
* This function scans the device tree for matching interrupt controller nodes,
* and calls their initialization functions in order with parents first.
*/
void __init of_irq_init(const struct of_device_id *matches)
{
const struct of_device_id *match;
struct device_node *np, *parent = NULL;
struct of_intc_desc *desc, *temp_desc;
struct list_head intc_desc_list, intc_parent_list;
INIT_LIST_HEAD(&intc_desc_list);
INIT_LIST_HEAD(&intc_parent_list);
for_each_matching_node_and_match(np, matches, &match) { /* 遍历设备树文件的设备节点。如果属性compatible和中断控制器匹配表中的任何一条表项的字段compatible匹配,处理如下 */
if (!of_property_read_bool(np, "interrupt-controller") ||
!of_device_is_available(np)) /* 如果没有节点属性interrupt-controller,说明设备不是中断控制器,忽略该设备 */
continue;
if (WARN(!match->data, "of_irq_init: no init function for %s\n",
match->compatible))
continue;
/*
* Here, we allocate and populate an of_intc_desc with the node
* pointer, interrupt-parent device_node etc.
*/
desc = kzalloc(sizeof(*desc), GFP_KERNEL); /* 分配一个of_intc_desc实例 */
if (WARN_ON(!desc)) {
of_node_put(np);
goto err;
}
desc->irq_init_cb = match->data; /* 成员irq_init_cb保存初始化函数 */
desc->dev = of_node_get(np); /* 成员dev保存本设备的device_node */
desc->interrupt_parent = of_irq_find_parent(np); /* 成员interrupt保存父设备 */
if (desc->interrupt_parent == np)
desc->interrupt_parent = NULL;
list_add_tail(&desc->list, &intc_desc_list); /* 把of_intc_desc实例添加到链表intc_desc_list中 */
}
/*
* The root irq controller is the one without an interrupt-parent.
* That one goes first, followed by the controllers that reference it,
* followed by the ones that reference the 2nd level controllers, etc.
*/
while (!list_empty(&intc_desc_list)) { /* 遍历链表intc_desc_list,从根设备开始,先执行父设备的初始化函数,然后执行子设备的初始化函数 */
/*
* Process all controllers with the current 'parent'.
* First pass will be looking for NULL as the parent.
* The assumption is that NULL parent means a root controller.
*/
list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
int ret;
if (desc->interrupt_parent != parent)
continue;
list_del(&desc->list);
of_node_set_flag(desc->dev, OF_POPULATED);
pr_debug("of_irq_init: init %pOF (%p), parent %p\n",
desc->dev,
desc->dev, desc->interrupt_parent);
ret = desc->irq_init_cb(desc->dev,
desc->interrupt_parent);
if (ret) {
of_node_clear_flag(desc->dev, OF_POPULATED);
kfree(desc);
continue;
}
/*
* This one is now set up; add it to the parent list so
* its children can get processed in a subsequent pass.
*/
list_add_tail(&desc->list, &intc_parent_list);
}
/* Get the next pending parent that might have children */
desc = list_first_entry_or_null(&intc_parent_list,
typeof(*desc), list);
if (!desc) {
pr_err("of_irq_init: children remain, but no parents\n");
break;
}
list_del(&desc->list);
parent = desc->dev;
kfree(desc);
}
list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) {
list_del(&desc->list);
kfree(desc);
}
err:
list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
list_del(&desc->list);
of_node_put(desc->dev);
kfree(desc);
}
}
设备树文件“arch/arm64/boot/dts/arm/foundation-v8.dts”里面中断控制器的属性“compatible”是:
compatible = "arm,cortex-a15-gic", "arm,cortex-a9-gic";
和中断控制器匹配表中的
{ .compatible = "arm,cortex-a15-gic", .data = gic_of_init }
{ .compatible = "arm,cortex-a9-gic", .data = gic_of_init }
匹配。
(2)gic_of_init
int __init
gic_of_init(struct device_node *node, struct device_node *parent) /* 参数node是本中断控制器,参数parent是父设备 */
{
struct gic_chip_data *gic;
int irq, ret;
if (WARN_ON(!node))
return -ENODEV;
if (WARN_ON(gic_cnt >= CONFIG_ARM_GIC_MAX_NR))
return -EINVAL;
gic = &gic_data[gic_cnt]; /* 从全局数组gic_data取一个空闲的元素来保存本中断控制器的信息 */
ret = gic_of_setup(gic, node); /* 调用函数gic_of_setup:从设备树文件读取中断控制器的属性reg,获取分发器和处理器接口的寄存器的物理地址范围,把物理地址映射到内核的虚拟地址空间 */
if (ret)
return ret;
/*
* Disable split EOI/Deactivate if either HYP is not available
* or the CPU interface is too small.
*/
if (gic_cnt == 0 && !gic_check_eoimode(node, &gic->raw_cpu_base))
static_branch_disable(&supports_deactivate_key);
ret = __gic_init_bases(gic, -1, &node->fwnode); /* 调用函数__gic_init_bases以初始化结构体gic_chip_data */
if (ret) {
gic_teardown(gic);
return ret;
}
if (!gic_cnt) {
gic_init_physaddr(node);
gic_of_setup_kvm_info(node);
}
if (parent) { /* 如果本中断控制器有父设备,即作为中断源连接到其他中断控制器,处理如下 */
irq = irq_of_parse_and_map(node, 0); /* 调用函数irq_of_parse_and_map:从设备树文件中本设备节点的属性interrupts获取硬件中断号,把硬件中断号映射到Linux中断号n */
gic_cascade_irq(gic_cnt, irq); /* 调用函数gic_cascade_irq:把Linux中断号n中断描述符的成员handle_irq()设置为函数gic_handle_cascade_irq() */
}
if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
gicv2m_init(&node->fwnode, gic_data[gic_cnt].domain);
gic_cnt++;
return 0;
}
(3)函数__gic_init_bases
static int __init __gic_init_bases(struct gic_chip_data *gic,
int irq_start,
struct fwnode_handle *handle)
{
char *name;
int i, ret;
if (WARN_ON(!gic || gic->domain))
return -EINVAL;
if (gic == &gic_data[0]) { /* 如果本中断控制器是根控制器,处理如下: */
/*
* Initialize the CPU interface map to all CPUs.
* It will be refined as each CPU probes its ID.
* This is only necessary for the primary GIC.
*/
for (i = 0; i < NR_GIC_CPU_IF; i++)
gic_cpu_map[i] = 0xff;
#ifdef CONFIG_SMP
set_smp_cross_call(gic_raise_softirq); /* 把全局函数指针__smp_cross_call设置为函数gic_raise_softirq */
#endif /* 用来发送软件生成的中断,即一个处理器向其他处理器发送中断 */
cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
"irqchip/arm/gic:starting",
gic_starting_cpu, NULL);
set_handle_irq(gic_handle_irq); /* 把全局函数指针handle_arch_irq设置为函数gic_handle_irq,该函数是中断处理程序C语言部分的入口 */
if (static_branch_likely(&supports_deactivate_key))
pr_info("GIC: Using split EOI/Deactivate mode\n");
}
/* 调用函数gic_init_chip以初始化中断控制器描述符irq_chip */
if (static_branch_likely(&supports_deactivate_key) && gic == &gic_data[0]) {
name = kasprintf(GFP_KERNEL, "GICv2");
gic_init_chip(gic, NULL, name, true);
} else {
name = kasprintf(GFP_KERNEL, "GIC-%d", (int)(gic-&gic_data[0]));
gic_init_chip(gic, NULL, name, false);
}
ret = gic_init_bases(gic, irq_start, handle); /* 调用函数gic_init_bases进行初始化:为本中断控制器分配中断域,初始化中断控制器的分发器的各种寄存器,初始化中断控制器的处理器接口的各种寄存器 */
if (ret)
kfree(name);
return ret;
}
4. Linux中断处理
对于中断控制器的每个中断源,向中断域添加硬件中断号到Linux中断号的映射时,内核分配一个Linux中断号和一个中断描述符irq_desc,中断描述符由两个层次的中断处理函数:
(1)第一层处理函数是中断描述符的成员handle_irq()
(2)第二层处理函数是设备驱动程序注册的处理函数。中断描述符由一个中断处理链表(irq_desc.action),每个中断处理描述符(irq_action)保存设备驱动程序注册的处理函数。因为多个设备可以共享同一个硬件中断号,所以中断处理链表可能挂载多个中断处理描述符。
怎么存储Linux中断号到中断描述符的映射关系?
有两种实现方式:
(1)如果中断编号是稀疏的(即不连续),那么使用基数树(radix tree)存储。需要开启配置宏CONFIG_SPARSE_IRQ。
(2)如果中断编号是连续的,那么使用数组存储。
#ifdef CONFIG_SPARSE_IRQ
...
static RADIX_TREE(irq_desc_tree, GFP_KERNEL);
...
#else /* !CONFIG_SPARSE_IRQ */
struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
[0 ... NR_IRQS-1] = {
.handle_irq = handle_bad_irq,
.depth = 1,
.lock = __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
}
};
...
#endif /* !CONFIG_SPARSE_IRQ */
把硬件中断号映射到Linux中断号的时候,根据硬件中断的类型设置中断描述符的成员handle_irq(),以GIC v2控制器为例,函数gic_irq_domain_map所做的处理如下:
irq_create_mapping -> irq_domain_associate() -> domain->ops->map() -> gic_irq_domain_map()
drivers/irqchip/irq-gic.c
tatic int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hw)
{
struct gic_chip_data *gic = d->host_data;
if (hw < 32) { /* 如果硬件中断号小于32,说明是软件生成的中断或私有外设中断,那么把终端描述符的成员handle_irq()设置为函数handle_percpu_devid_irq */
irq_set_percpu_devid(irq);
irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
handle_percpu_devid_irq, NULL, NULL);
irq_set_status_flags(irq, IRQ_NOAUTOEN);
} else { /* 如果硬件中断号大于或等于32,说明共享外设中断,那么把中断描述符的成员handle_irq()设置为函数handle_fasteoi_irq */
irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
handle_fasteoi_irq, NULL, NULL);
irq_set_probe(irq);
irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
}
return 0;
}
在ARM64架构下,在异常级别1的异常向量表中,中断的入口有3个:
(1)如果处理器处在内核模式(异常级别1),中断的入口是el1_irq;
(2)如果处理器正在用户模式(异常级别0)下执行64位应用程序,中断的入口是el0_irq;
(3)如果处理器正在用户模式(异常级别0)下执行32位应用程序,中断的入口是el0_irq_compat。
假设处理器正在用户模式(异常级别0)下执行64位应用程序,中断控制器是GIC v2控制器,Linux中断处理流程如下:
函数el0_irq的代码如下:
arch/arm64/kernel/irq.c
/* 每个处理器有一个专用的中断栈 */
DEFINE_PER_CPU(unsigned long *, irq_stack_ptr);
arch/arm64/kernel/entry.S
/*
* Interrupt handling.
*/
.macro irq_handler
ldr_l x1, handle_arch_irq
mov x0, sp
irq_stack_entry // 从进程的内核栈切换到中断栈
blr x1 // 调用函数指针handle_arch_irq指向的函数
irq_stack_exit // 从中断栈切换到进程的内核栈
.endm
.align 6
el1_irq:
kernel_entry 1
enable_da_f
#ifdef CONFIG_TRACE_IRQFLAGS
bl trace_hardirqs_off
#endif
irq_handler // irq_handler是一个宏
#ifdef CONFIG_PREEMPT
ldr x24, [tsk, #TSK_TI_PREEMPT] // get preempt count 读取抢占计数
cbnz x24, 1f // preempt count != 0 抢占计数不等于0
bl el1_preempt
1:
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
bl trace_hardirqs_on
#endif
kernel_exit 1
ENDPROC(el1_irq)
在gic_of_init() -> __gic_init_bases中初始化了函数handle_arch_irq,GIC v2控制器把该函数指针设置为函数gic_handle_irq。
drivers/irqchip/irq-gic.c
static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
{
u32 irqstat, irqnr;
struct gic_chip_data *gic = &gic_data[0];
void __iomem *cpu_base = gic_data_cpu_base(gic);
do {
irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK); /* 读取处理器接口的中断确认寄存器得到中断号 */
irqnr = irqstat & GICC_IAR_INT_ID_MASK;
if (likely(irqnr > 15 && irqnr < 1020)) { /* 如果硬件中断号大于15且小于1020,即中断是由外围设备发送的 */
if (static_branch_likely(&supports_deactivate_key)) /* 把中断号写到处理器接口的中断结束寄存器中,指示中断处理完成 */
writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
isb();
handle_domain_irq(gic->domain, irqnr, regs); /* 如果是私有外设中断,那么中断描述符的成员handle_irq()是函数handle_percpu_devid_irq; */
continue; /* 如果是共享外设中断,那么中断描述符的成员handle_irq()是函数handle_fasteoi_irq */
}
if (irqnr < 16) { /* 如果硬件中断号小于16,即软件生成的中断 */
writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
if (static_branch_likely(&supports_deactivate_key)) /* 把中断号写到处理器接口的中断结束寄存器中,指示中断处理完成 */
writel_relaxed(irqstat, cpu_base + GIC_CPU_DEACTIVATE);
#ifdef CONFIG_SMP
/*
* Ensure any shared data written by the CPU sending
* the IPI is read after we've read the ACK register
* on the GIC.
*
* Pairs with the write barrier in gic_raise_softirq
*/
smp_rmb();
handle_IPI(irqnr, regs);
#endif
continue;
}
break;
} while (1);
}
函数handle_domain_irq():
include/linux/irqdesc.h
static inline void generic_handle_irq_desc(struct irq_desc *desc)
{
desc->handle_irq(desc);
}
kernel/irq/irqdesc.c
int generic_handle_irq(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
if (!desc)
return -EINVAL;
generic_handle_irq_desc(desc);
return 0;
}
kernel/irq/irqdesc.c
#ifdef CONFIG_HANDLE_DOMAIN_IRQ
int __handle_domain_irq(struct irq_domain *domain, unsigned int hwirq,
bool lookup, struct pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs(regs);
unsigned int irq = hwirq;
int ret = 0;
irq_enter();
#ifdef CONFIG_IRQ_DOMAIN
if (lookup)
irq = irq_find_mapping(domain, hwirq);
#endif
/*
* Some hardware gives randomly wrong interrupts. Rather
* than crashing, do something sensible.
*/
if (unlikely(!irq || irq >= nr_irqs)) {
ack_bad_irq(irq);
ret = -EINVAL;
} else {
generic_handle_irq(irq);
}
irq_exit();
set_irq_regs(old_regs);
return ret;
}
#endif
include/linux/irqdesc.h
static inline int handle_domain_irq(struct irq_domain *domain,
unsigned int hwirq, struct pt_regs *regs)
{
return __handle_domain_irq(domain, hwirq, true, regs);
}
如果是私有外设中断,那么中断描述符的成员handle_irq()是函数handle_percpu_devid_irq,其代码如下:
kernel/irq/chip.c
void handle_percpu_devid_irq(struct irq_desc *desc)
{
struct irq_chip *chip = irq_desc_get_chip(desc);
struct irqaction *action = desc->action;
unsigned int irq = irq_desc_get_irq(desc);
irqreturn_t res;
...
if (chip->irq_ack)
chip->irq_ack(&desc->irq_data);
if (likely(action)) {
...
res = action->handler(irq, raw_cpu_ptr(action->percpu_dev_id));
...
} else {
...
}
if (chip->irq_eoi)
chip->irq_eoi(&desc->irq_data);
}
如果是共享外设中断,那么中断描述符的成员handle_irq()是函数handle_fasteoi_irq,其代码如下:
kernel/irq/chip.c
void handle_fasteoi_irq(struct irq_desc *desc)
{
struct irq_chip *chip = desc->irq_data.chip;
raw_spin_lock(&desc->lock);
if (!irq_may_run(desc))
goto out;
desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING);
/*
* If its disabled or no action available
* then mask it and get out of here:
*/
if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) {
desc->istate |= IRQS_PENDING;
mask_irq(desc);
goto out;
}
kstat_incr_irqs_this_cpu(desc);
if (desc->istate & IRQS_ONESHOT)
mask_irq(desc);
preflow_handler(desc);
handle_irq_event(desc); /* 调用函数handle_irq_event执行设备驱动程序注册的处理函数 */
cond_unmask_eoi_irq(desc, chip);
raw_spin_unlock(&desc->lock);
return;
out:
if (!(chip->flags & IRQCHIP_EOI_IF_HANDLED))
chip->irq_eoi(&desc->irq_data);
raw_spin_unlock(&desc->lock);
}
函数handle_irq_event把主要工作委托给函数__handle_irq_event_percpu。函数__handle_irq_event_percpu遍历中断描述符的中断处理链表,执行每个中断处理描述符的处理函数,其代码如下:
handle_irq_event() -> handle_irq_event_percpu() -> __handle_irq_event_percpu()
kernel/irq/handle.c
irqreturn_t __handle_irq_event_percpu(struct irq_desc *desc, unsigned int *flags)
{
irqreturn_t retval = IRQ_NONE;
unsigned int irq = desc->irq_data.irq;
struct irqaction *action;
/* 遍历中断描述符的的中断处理链表,执行每个中断处理描述符的处理函数 */
record_irq_time(desc);
for_each_action_of_desc(desc, action) {
irqreturn_t res;
trace_irq_handler_entry(irq, action);
res = action->handler(irq, action->dev_id);
trace_irq_handler_exit(irq, action, res);
if (WARN_ONCE(!irqs_disabled(),"irq %u handler %pF enabled interrupts\n",
irq, action->handler))
local_irq_disable();
switch (res) {
case IRQ_WAKE_THREAD:
/*
* Catch drivers which return WAKE_THREAD but
* did not set up a thread function
*/
if (unlikely(!action->thread_fn)) {
warn_no_thread(irq, action);
break;
}
__irq_wake_thread(desc, action);
/* 继续往下走,把action->flags作为生成随机数的一个因子 */
/* Fall through to add to randomness */
case IRQ_HANDLED:
*flags |= action->flags;
break;
default:
break;
}
retval |= res;
}
return retval;
}
5. 中断线程化
中断线程化就是使用内核线程处理中断,目的是减少系统关中断的时间,增强系统的实时性。内核提供的函数request_threaded_irq()用来注册线程化的中断:
int request_threaded_irq(unsigned int irq, irq_handler_t handler,
irq_handler_t thread_fn, unsigned long irqflags,
const char *devname, void *dev_id)
参数thread_fn是线程处理函数。
少数中断不能线程化,典型的例子是时钟中断,有些流氓进程不主动让出处理器,内核只能依靠周期性的时钟中断夺回处理器的控制权,时钟中断是调度器的脉搏。对于不能线程化的中断,注册处理函数的时候必须设置标志IRQF_NO_THREAD。
如果开启了强制中断线程化的配置宏CONFIG_IRQ_FORCED_THREADING,并且在引导内核的时候指定内核参数“threadirqs”,那么强制除了标记IRQF_NO_THREAD以外的所有中断线程化。
每个中断描述符(irqaction)对应一个内核线程,其代码如下:
include/linux/interrupt.h
struct irqaction {
irq_handler_t handler;
void *dev_id;
void __percpu *percpu_dev_id;
struct irqaction *next; /* 中断处理描述符链表 */
irq_handler_t thread_fn; /* 指向线程处理函数 */
struct task_struct *thread; /* 指向内核线程的进程描述符 */
struct irqaction *secondary;
unsigned int irq;
unsigned int flags;
unsigned long thread_flags;
unsigned long thread_mask;
const char *name;
struct proc_dir_entry *dir;
} ____cacheline_internodealigned_in_smp;
request_threaded_irq() -> __setup_irq() -> setup_irq_thread()
kernel/irq/manage.c
static int
setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
{
struct task_struct *t;
struct sched_param param = {
.sched_priority = MAX_USER_RT_PRIO/2, /* */
};
if (!secondary) {
t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
new->name); /* 名称是“irq/”后面跟着Linux中断号,线程处理函数是irq_thread() */
} else {
t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
new->name);
param.sched_priority -= 1;
}
if (IS_ERR(t))
return PTR_ERR(t);
sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); /* 中断处理线程是优先级为50、调度策略是SCHED_FIFO的实时内核线程 */
/*
* We keep the reference to the task struct even if
* the thread dies to avoid that the interrupt code
* references an already freed task_struct.
*/
get_task_struct(t);
new->thread = t;
/*
* Tell the thread to set its affinity. This is
* important for shared interrupt handlers as we do
* not invoke setup_affinity() for the secondary
* handlers as everything is already set up. Even for
* interrupts marked with IRQF_NO_BALANCE this is
* correct as we want the thread to move to the cpu(s)
* on which the requesting code placed the interrupt.
*/
set_bit(IRQTF_AFFINITY, &new->thread_flags);
return 0;
}
在中断处理程序中,函数__handle_irq_event_percpu遍历中断描述符的中断处理链表,执行每个中断处理描述符的处理函数。如果返回IRQ_WAKE_THREAD,说明是线程化的中断,那么唤醒中断处理线程。
中断处理线程的处理函数是irq_thread(),调用函数irq_thread_fn(),然后函数irq_thread_fn()调用注册的线程处理函数。
kernel/irq/manage.c
static irqreturn_t irq_thread_fn(struct irq_desc *desc,
struct irqaction *action)
{
irqreturn_t ret;
ret = action->thread_fn(action->irq, action->dev_id);
if (ret == IRQ_HANDLED)
atomic_inc(&desc->threads_handled);
irq_finalize_oneshot(desc, action);
return ret;
}
static int irq_thread(void *data)
{
struct callback_head on_exit_work;
struct irqaction *action = data;
struct irq_desc *desc = irq_to_desc(action->irq);
irqreturn_t (*handler_fn)(struct irq_desc *desc,
struct irqaction *action);
if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
&action->thread_flags))
handler_fn = irq_forced_thread_fn;
else
handler_fn = irq_thread_fn;
init_task_work(&on_exit_work, irq_thread_dtor);
task_work_add(current, &on_exit_work, false);
irq_thread_check_affinity(desc, action);
while (!irq_wait_for_interrupt(action)) {
irqreturn_t action_ret;
irq_thread_check_affinity(desc, action);
action_ret = handler_fn(desc, action);
if (action_ret == IRQ_WAKE_THREAD)
irq_wake_secondary(desc, action);
wake_threads_waitq(desc);
}
/*
* This is the regular exit path. __free_irq() is stopping the
* thread via kthread_stop() after calling
* synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
* oneshot mask bit can be set.
*/
task_work_cancel(current, irq_thread_dtor);
return 0;
}
6. 禁止/开启中断
禁止中断接口:
(1)local_irq_disable()
(2)local_irq_save(flags):首先把中断状态保存在参数flags中,然后禁止中断
这两个接口只能禁止本处理器的中断,不能禁止其他处理器的中断。
开启中断接口:
(1)local_irq_enable()
(2)local_irq_restore(flags):恢复本处理器的中断状态
local_irq_disable()和local_irq_enable()不能嵌套使用,local_irq_save(flags)和local_irq_restore(flags)可以嵌套使用。
7. 禁止/开启单个中断
禁止中断的函数是:void disable_irq(unsigned int irq),参数irq是Linux中断号
开启中断的函数是:void enable_irq(unsigned int irq),参数irq是Linux中断号
8. 中断亲和性
在多处理器系统中,管理员可以设置中断亲和性,允许中断控制器把某个中断转发给哪些处理器,有两种配置方法:
(1)写文件“/proc/irq/IRQ#/smp_affinity”,参数是位掩码
(2)写文件“/proc/irq/IRQ#/smp_affinity_list”,参数是处理器列表
内核提供了设置中断亲和性的函数:
int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
参数irq是Linux中断号,参数cpumask是处理器位掩码。
9. 处理器间中断
处理器间中断(Inter-Processor Interrupt,IPI)是一种特殊的中断,在多处理器系统中,一个处理器可以向其他处理器发送中断,要求目标处理器执行某件事情。
常见的使用处理器间中断的函数如下:
(1)在所有处理器上执行同一个函数:
int up_smp_call_function(smp_call_func_t func, void *info, int wait);
(2)在指定的处理器上执行一个函数
int smp_call_function_single(int cpuid, smp_call_func_t func, void *info, int wait);
(3)要求指定的处理器重新调度进程
void smp_send_reschedule(int cpu);
对于ARM64架构的GIC控制器,把处理器间生成的中断称为软件生成的中断。
函数handle_IPI负责处理处理器减中断,参数ipinr是硬件中断号,其代码如下:
arch/arm64/kernel/smp.c
void handle_IPI(int ipinr, struct pt_regs *regs)
{
unsigned int cpu = smp_processor_id();
struct pt_regs *old_regs = set_irq_regs(regs);
if ((unsigned)ipinr < NR_IPI) {
trace_ipi_entry_rcuidle(ipi_types[ipinr]);
__inc_irq_stat(cpu, ipi_irqs[ipinr]);
}
/* 目前支持7种处理间中断 */
switch (ipinr) {
case IPI_RESCHEDULE: /* 硬件中断号是0,重新调度进程,函数smp_send_reschedule()生成的中断 */
scheduler_ipi();
break;
case IPI_CALL_FUNC: /* 硬件中断号是1,执行函数,函数smp_call_function生成的中断 */
irq_enter();
generic_smp_call_function_interrupt();
irq_exit();
break;
case IPI_CPU_STOP: /* 硬件中断号是2,使处理器停止,函数smp_send_stop()生成的中断 */
irq_enter();
ipi_cpu_stop(cpu);
irq_exit();
break;
case IPI_CPU_CRASH_STOP: /* 硬件中断号是3,使处理器停止,函数smp_send_crash_stop()生成的中断 */
if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
irq_enter();
ipi_cpu_crash_stop(cpu, regs);
unreachable();
}
break;
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
case IPI_TIMER: /* 硬件中断号是4,广播的时钟事件,函数tick_broadcast()生成的中断 */
irq_enter();
tick_receive_broadcast();
irq_exit();
break;
#endif
#ifdef CONFIG_IRQ_WORK
case IPI_IRQ_WORK: /* 硬件中断号是5,在硬中断上下文中执行回调函数,函数irq_work_queue()生成的中断 */
irq_enter();
irq_work_run();
irq_exit();
break;
#endif
#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
case IPI_WAKEUP: /* 硬件中断号是6,唤醒处理器,函数acpi_parking_protocol_cpu_boot()生成的中断 */
WARN_ONCE(!acpi_parking_protocol_valid(cpu),
"CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
cpu);
break;
#endif
default:
pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
break;
}
if ((unsigned)ipinr < NR_IPI)
trace_ipi_exit_rcuidle(ipi_types[ipinr]);
set_irq_regs(old_regs);
}