utittest和pytest中mock的使用详细介绍

news2025/1/9 22:54:17

在这里插入图片描述
在这里插入图片描述

Mock是Python中一个用于支持单元测试的库,它的主要功能是使用mock对象替代掉指定的Python对象,以达到模拟对象的行为。

python3.3 以前,mock是第三方库,需要安装之后才能使用。python3.3之后,mock作为标准库内置到 unittest。

在这里插入图片描述

unittest是Python标准库中自带的单元测试框架,unittest有时候也被称为PyUnit,就像JUnit是Java语言的标准单元测试框架一样,unittest则是Python语言的标准单元测试框架。

unittest是一个单元测试的框架,能够提供很多测试相关的功能,如:编写测试用例,准备测试环境,生成测试报告等。unittest 中集成了mock,可以用来模拟一些函数返回,未实现的接口等。

unittest导入mock对象:

from Unittest import mock

在这里插入图片描述
pytest是基于unittest衍生出来的新的测试框架,使用起来相对于unittest来说更简单、效率来说更高,pytest兼容unittest测试用例,但是反过来unittest不兼容pytest。

pytest也是一个测试框架,公认的比Unittest更加简单和高效。pytest中也有mock方法就是pytest-mock,pytest-mock是一个pytest插件,和 Unittest 中的mock使用接近,大多数方法的定义都是一致的。

对比

在这里插入图片描述
因为unittest集成了mock,而且python3.0使用更加广泛,所以以unittest中的mock为例介绍mock功能。
mock模块主要的函数如下:
在这里插入图片描述
在这里插入图片描述
Mock对象是模拟的基石,提供了丰富多彩的功能。从测试的阶段来分类包括:

1、构造器:创建mock对象

2、断言方法:判断代码运行的状态

3、管理方法:管理mock对象

4、统计方法:统计mock对象的调用
在这里插入图片描述
定义:

class unittest.mock.Mock(spec=None, side_effect=None, return_value=DEFAULT, wraps=None, name=None, spec_set=None, unsafe=False, **kwargs)

Mock是一个类,类中有很多属性和方法,这些属性和方法可以通过参数传递进入,也可以通过实例设置。

重要的参数:

return_value :调用mock的返回值,模拟某一个方法的返回值。

side_effect :调用mock时的返回值,可以是函数,异常类,可迭代对象。使用side_effect可以将模拟对象的返回值变成函数,异常类,可迭代对象等。

当设置了该方法时,如果该方法返回值是DEFAULT,那么返回return_value的值,如果不是,则返回该方法的值。 return_value 和 side_effect 同时存在,side_effect会返回。

如果 side_effect 是异常类或实例时,调用模拟程序时将引发异常。

如果 side_effect 是可迭代对象,则每次调用 mock 都将返回可迭代对象的下一个值。

name :mock 的名称。 这个是用来命名一个mock对象,只是起到标识作用,当你print一个mock对象的时候,可以看到它的name。

wraps: 装饰器:模拟对象要装饰的项目。

如果wrapps不是None,那么调用Mock将把调用传递给wrapped对象(返回实际结果)。

对mock的属性访问将返回一个mock对象,该对象装饰了包装对象的相应属性。

spec_set:更加严格的要求,spec_set=True时,如果访问mock不存在属性或方法会报错

spec: 参数可以把一个对象设置为 Mock 对象的属性。访问mock对象上不存在的属性或方法时,将会抛出属性错误。

在这里插入图片描述

使用mock.Mock()可以创建一个mock对象,对象中的方法有两种设置途径:

1、作为Mock类的参数传入。

mock.Mock(return_value=20,side_effect=mock_fun, name=‘mock_sum’)

2、实例化mock对象之后设置属性。

mock_sum = mock.Mock()
mock_sum.return_value = 20
mock_sum.side_effect = mock_fun

return_value

return_value 用于设置mock对象的返回值,可以是数值,字符串等。

from unittest import mock

def get_sum(x, y):
    pass

if __name__ == '__main__':
    get_sum = mock.Mock(return_value=20)
    result = get_sum(100, 200)
    print(result)
>>>>>
20
from unittest import mock

def get_sum(x, y):
    pass

if __name__ == '__main__':
    get_sum = mock.Mock()
    get_sum.return_value = 20
    result = get_sum()
    print(result)
>>>
20

side_effect

side_effect 用于返回一个函数,可迭代对象,异常类等。

该函数的返回值就是调用 Mock 对象的返回值:

from unittest import mock


def get_sum(x, y):
    pass


def mock_fun():
    return 30

if __name__ == '__main__':
    a = 100
    b = 200
    get_sum = mock.Mock(side_effect=mock_fun)
    result = get_sum()
    print(result)
>>>
30
from unittest import mock

def get_sum(x, y):
    pass

def mock_fun():
    return 30

if __name__ == '__main__':
    get_sum = mock.Mock()
    get_sum.side_effect = mock_fun
    result = get_sum()
    print(result)
>>>>
30

return_value 和 side_effect 同时存在

当 return_value 和 side_effect 同时设置时,会返回side_effect的结果。

from unittest import mock

def get_sum(x, y):
    pass

def mock_fun():
    return 30

if __name__ == '__main__':
    a = 100
    b = 200
    get_sum = mock.Mock(return_value=20, side_effect=mock_fun)
    result = get_sum()
    print(result)
>>>
30
from unittest import mock

def get_sum(x, y):
    pass

def mock_fun():
    return 30

if __name__ == '__main__':
    a = 100
    b = 200
    get_sum = mock.Mock()
    get_sum.return_value = 20
    get_sum.side_effect = mock_fun
    result = get_sum()
    print(result)

side_effect除了上述的常规使用方法外,还可以用在一些复杂的测试场景下:

可迭代对象

可以将 side_effect 设置为可迭代对象。对于 Mock 对象将要被调用多次,并且每次调用需要返回不同的值的情形,可以将 side_effect 指定为一个可迭代对象。每次调用 Mock 对象将返回可迭代对象的下一个值。

动态返回值

对于更复杂的使用场景,比如根据调用 Mock 对象时传递的参数动态地更改返回值,可以将 side_effect 设置为函数。该函数将被使用与 Mock 对象相同的参数调用。

name

打印mock对象时,如果没有设置名字会显示mock的id,如果设置了name属性会显示name。

from unittest import mock

def get_sum(x, y):
    pass
    
if __name__ == '__main__':
    a = 100
    b = 200
    get_sum = mock.Mock()
    print(get_sum)
    
    get_sum = mock.Mock(name='get_sum')
    print(get_sum)
>>>>
<Mock id='139999033794288'>
<Mock name='get_sum' id='139999033794344'>

wraps

对象是装饰器时的mock方法。

from unittest import mock

def get_sum(x, y):
    pass

def mock_fun():
    return 30

def wrap_fun():
    return mock_fun()

get_sum = mock.Mock(wraps=wrap_fun)
print(get_sum())
>>>
30

spec

参数可以把一个对象设置为 Mock 对象的属性。访问mock对象上不存在的属性或方法时,将会抛出属性错误。

from unittest import mock

class SomeClass:
    def new_method(self):
        return 20

mock = mock.Mock(spec=SomeClass)
print(mock.new_method())
print(mock.old_method())
>>>>
<Mock name='mock.new_method()' id='4401569552'>
Traceback (most recent call last):
  File "mock_demo.py", line 57, in <module>
    print(mock.old_method())
  File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.8/lib/python3.8/unittest/mock.py", line 637, in __getattr__
    raise AttributeError("Mock object has no attribute %r" % name)
AttributeError: Mock object has no attribute 'old_method'

spec_set

spec_set 严格限制mock对象的属性访问。如果访问不存在的对象会报错。

没有设置spec_set,当访问未定义属性时不会报错

from unittest import mock

def get_sum(x, y):
    pass

get_sum = mock.Mock()
get_sum.return_value = 100
print(get_sum())
print(get_sum.name)

>>>
ljk@work:~/Desktop$ python3 mock_fun1.py 
100
<Mock name='mock.name' id='140556594167200'>

设置了spec_set,访问未定义属性会报错

from unittest import mock

def get_sum(x, y):
    pass
    
get_sum = mock.Mock(spec_set=True)
get_sum.return_value = 100
print(get_sum())
print(get_sum.name)
>>>>
ljk@work:~/Desktop$ python3 mock_fun1.py 
100
Traceback (most recent call last):
  File "mock_fun1.py", line 37, in <module>
    print(mock_demo.get_sum.name)
  File "/usr/lib/python3.7/unittest/mock.py", line 590, in __getattr__
    raise AttributeError("Mock object has no attribute %r" % name)
AttributeError: Mock object has no attribute 'name'

mock.Mock的不足之处

Mock方法是最基础的方法,在使用的使用需要实例化一个对象,设置方法,然后完成模拟。这里有一个问题:没有控制mock范围,控制不精细。

完成模拟之后之后,必须把它们复原。如果模拟对象在其它测试中持续存在,那么会导致难以诊断的问题。

为此,mock中还提供了 mock.patch和mock.patch.object 等多个对象。mock.patch 是一种进阶的使用方法,主要是方便函数和类的测试,有三种使用方法:

1、函数修饰器

2、类修饰器

3、上下文管理器

使用patch或者patch.object的目的是为了控制mock的范围。

patch:用于mock一个函数

patch.object:用于mock一个类

在这里插入图片描述
mock.patch 的定义:

unittest.mock.patch(target, new=DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs)

说明:

Patch()充当函数修饰器、类修饰器或上下文管理器。在函数体或with语句中,使用patch中的new替换目标函数或方法。当function/with语句退出时,模拟程序被撤消。

在这里插入图片描述
参数:

target: 模拟对象的路径,参数必须是一个str,格式为’package.module.ClassName’,
注意这里的格式一定要写对。如果对象和mock函数在同一个文件中,路径要加文件名

new: 模拟返回的结果,是一个具体的值,也可是函数。new属性替换target,返回模拟的结果。

new_callable 模拟返回的结果,是一个可调用的对象,可以是函数。

spec: 与Mock对象的参数类似,用于设置mock对象属性。

spec_set: 与Mock对象的参数类似,严格限制mock对象的属性或方法的访问。

autospec:替换mock对象中所有的属性。可以替换对象所有属性,但不包括动态创建的属性。

autospec是一个更严格的规范。如果你设置了autospec=True,将会使用spec替换对象的属性来创建一个mock对象。mock对象的所有属性都会被spec相应的属性替换。

被mock的方法和函数会检查他们的属性,如果调用它们没有属性会抛出 TypeError。它们返回的实例也会是相同属性的类。

create:允许访问不存在属性

默认情况下,patch()将无法替换不存在的属性。如果你通过create=True,当替换的属性不存在时,patch会创建一个属性,并且当函数退出时会删除掉属性。这对于针对生产代码在运行时创建的属性编写测试非常有用。它在默认情况下是关闭的,因为它可能是危险的,打开它后,您可以针对实际不存在的api编写通过测试的代码

同时mock.patch也是mock的一个子类,所以可以用return_value 和 side_effect

直接使用

return_value

demo.py

def get_sum(x, y):
    pass

test_demo.py

import demo
from unittest import mock

def need_mock_fun():
    mock_get_sum = mock.patch('demo.get_sum', return_value=20)

    mock_get_sum.start()
    result = demo.get_sum()
    mock_get_sum.stop()
    
    print(result)
    
need_mock_fun()

side_effect

import demo
from unittest import mock

def need_mock_fun():
    mock_get_sum = mock.patch('demo.get_sum', side_effect=mock_fun)

    mock_get_sum.start()
    result = demo.get_sum()
    mock_get_sum.stop()
    
    print(result)
    
need_mock_fun()
import demo
from unittest import mock

def need_mock_fun():
    mock_get_sum = mock.patch('demo.get_sum', return_value=20, side_effect=mock_fun)

    mock_get_sum.start()
    result = demo.get_sum()
    mock_get_sum.stop()
    
    print(result)
    
need_mock_fun()

new

new 用来模拟返回结果

import demo
from unittest import mock

def need_mock_fun():
    mock_get_sum = mock.patch('demo.get_sum')
    mock_get_sum.new = 40

    mock_get_sum.start()
    result = demo.get_sum
    print(result)
    mock_get_sum.stop()

new 是用来返回结果,return_value 也是用来返回结果。但是两者有不同之处。设置return_value时,调用模拟对象时使用函数的方法。如result = demo.get_sum(),而new是将整个函数模拟成一个返回值,需要使用result = demo.get_sum。如下使用函数调用的方式就会报错。

def need_mock_fun():
    with mock.patch('demo.get_sum', new=40):
        result = demo.get_sum()
        print(result)
>>>>>
Traceback (most recent call last):
  File "mock_demo.py", line 37, in <module>
    need_mock_fun()
  File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.8/lib/python3.8/unittest/mock.py", line 1348, in patched
    return func(*newargs, **newkeywargs)
  File "mock_demo.py", line 12, in need_mock_fun
    result = demo.get_sum()
TypeError: 'int' object is not callable
def need_mock_fun():
    mock_get_sum = mock.patch('demo.get_sum', new=40)
    mock_get_sum.start()
    result = demo.get_sum
    print(result)
    mock_get_sum.stop()

上面的使用方法常用于模拟一个变量的情况,对于模拟函数并不是合适。如果模拟函数,可以给new赋值一个函数。如下:

import demo
from unittest import mock

def mock_fun():
    return 30

def need_mock_fun():
    mock_get_sum = mock.patch('demo.get_sum', new=mock_fun)

    mock_get_sum.start()
    result = demo.get_sum()
    mock_get_sum.stop()
    
    print(result)

need_mock_fun()
>>>
30

new_callable

模拟返回的结果,必须是一个可调用的对象,可以是函数。

import demo
from unittest import mock

def mock_fun():
    return 30

def need_mock_fun():
    mock_get_sum = mock.patch('demo.get_sum')
    mock_get_sum.new_callable = mock_fun

    mock_get_sum.start()
    result = demo.get_sum
    print(result)
    mock_get_sum.stop()
>>>>
30
def need_mock_fun():
    mock_get_sum = mock.patch('demo.get_sum', new_callable=mock_fun)

    mock_get_sum.start()
    result = demo.get_sum
    print(result)
    mock_get_sum.stop()
>>>
30

new和new_callable不可共存

new 与 new_callable 不可以共同设置。

new是实际对象;new_callable是用于创建对象的可调用对象。两者不能一起使用(您可以指定替换或函数来创建替换;同时使用两者是错误的。)

def need_mock_fun():
    mock_get_sum = mock.patch('demo.get_sum', new=40, new_callable=mock_fun)
    # mock_get_sum.new_callable = mock_fun
    # mock_get_sum.new = 40

    mock_get_sum.start()
    # mock_get_sum.return_value = 20
    # mock_get_sum.side_effect = mock_fun
    result = demo.get_sum
    print(result)
    mock_get_sum.stop()
>>>>>>
vTraceback (most recent call last):
  File "mock_demo.py", line 38, in <module>
    need_mock_fun()
  File "mock_demo.py", line 26, in need_mock_fun
    mock_get_sum = mock.patch('demo.get_sum', new=40, new_callable=mock_fun)
  File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.8/lib/python3.8/unittest/mock.py", line 1727, in patch
    return _patch(
  File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.8/lib/python3.8/unittest/mock.py", line 1248, in __init__
    raise ValueError(
ValueError: Cannot use 'new' and 'new_callable' together

生效:

new > side_effect > return_value

new_callable > side_effect > return_value

def mock_fun():
    return 30

def mock_fun_two():
    return 50
    
def need_mock_fun():
    mock_get_sum = mock.patch('demo.get_sum')
    mock_get_sum.new_callable = mock_fun_two
    mock_get_sum.new = 40

    mock_get_sum.start()
    mock_get_sum.return_value = 20
    mock_get_sum.side_effect = mock_fun
    result = demo.get_sum
    print(result)
    mock_get_sum.stop()
>>>>
40

装饰器@mock.patch

mock.patch可以作为装饰器来装饰一个测试函数

demo.py

def get_sum(x, y):
    pass

test_demo.py

from unittest import mock
import demo


@mock.patch('demo.get_sum')
def need_mock_fun(mock_get_sum):
    mock_get_sum.return_value = 20
    result = demo.get_sum()
    print(result)

need_mock_fun()
>>>>
20
from unittest import mock
import demo

def mock_fun():
    return 30

@mock.patch('demo.get_sum')
def need_mock_fun(mock_get_sum):
    mock_get_sum.side_effect = mock_fun
    result = demo.get_sum()
    print(result)

need_mock_fun()
>>>
30
from unittest import mock
import demo

def mock_fun():
    return 30

@mock.patch('demo.get_sum')
def need_mock_fun(mock_get_sum):
    mock_get_sum.return_value = 20
    mock_get_sum.side_effect = mock_fun
    result = demo.get_sum()
    print(result)

need_mock_fun()
>>>
30

with 上下文管理器

使用with将mock对象作用于上下文

demo.py

def get_sum(x, y):
    pass

new

demo.py

def get_sum(x, y):
    pass
import demo
from unittest import mock


def need_mock_fun():
    with mock.patch('demo.get_sum', new=40):
        result = demo.get_sum
        print(result)
>>>
40

new_callable

demo.py

def get_sum(x, y):
    pass
import demo
from unittest import mock

def mock_fun():
    return 30

def need_mock_fun():
    with mock.patch('demo.get_sum', new_callable=mock_fun) as mock_get_sum:
        result = demo.get_sum
        print(result)
need_mock_fun()
>>>
30

三种使用方法对比

在这里插入图片描述
patch的最佳实践

patch有三种使用方法,最佳的使用实践是装饰器形态。

手动指定方法需要start和stop控制,过于繁琐,虽然存在一个stopall的方法,但是仍然要逐个start

with写法的缺点很明显,一次不可以mock多个目标,多个with层层缩进很明显不可能。

最佳实践:装饰器方法可以方便的mock多个对象,只需要熟悉装饰的顺序和函数参数的对应关系。patch中可以return_value和new都可以改变结果,推荐patch中使用new属性,Mock中使用return_value.
在这里插入图片描述

mock.patch.object 定义如下:

patch.object(target, attribute, new=DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs)

说明:

object()可以用作装饰器、类装饰器或上下文管理器。参数new, spec, create, spec set, autospec和new callable的含义与patch()相同。与patch()类似,patch.object()接受任意关键字参数,用于配置它创建的模拟对象。

使用场景:

仅仅需要mock一个类或模块中里的method,而无需mock整个类或模块。 例如,在对当前模块的某个函数进行测试时,可以用patch.object。与patch不同的是在参数的写法上,需要传入路径,mock对象,其他属性。

import demo
from unittest import mock

def need_mock_fun():
    mock_get_sum = mock.patch.object(demo, 'get_sum', return_value=20)

    mock_get_sum.start()
    result = demo.get_sum()
    mock_get_sum.stop()
    
    print(result)
    
need_mock_fun()
import demo
from unittest import mock

def need_mock_fun():
    with mock.patch.object(demo, 'get_sum', return_value=20):
        result = demo.get_sum()
        print(result)
import demo
from unittest import mock

@mock.patch.object(demo, 'get_sum')
def need_mock_fun(mock_get_sum):
    mock_get_sum.return_value = 20
    result = demo.get_sum()
    print(result)

在这里插入图片描述

用于一次mock多个对象

定义:

patch.multiple(target, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs)

说明:

multiple()可以用作装饰器、类装饰器或上下文管理器。参数spec、spec_set、create、autospec和new_callable与patch()的含义相同

demo.py

def funa():
    pass

def funb():
    pass
from unittest import mock
import demo

with mock.patch.multiple(demo, funa = mock.DEFAULT, funb = mock.DEFAULT) as mock_multiple:
    print(mock_multiple.get('funa'))
    mock_multiple['funa'].return_value =100
    print(demo.funa())

    mock_multiple['funb'].return_value =200
    print(demo.funb())
>>>>
<MagicMock name='funa' id='140604333786840'>
100
200
@mock.patch.multiple(mock_demo, funa = mock.DEFAULT, funb = mock.DEFAULT)
def need_mock_fun(funa, funb):
    funa.return_value = 100
    print(demo.funa())
    funb.return_value = 200
    print(demo.funb())
>>>
100
200

该方法并不推荐使用,因为如果需要一次mock两个对象完全可以用装饰器@mock.path()的方式,比起该方法更加直观和简洁。

在这里插入图片描述

patch.dict() 用于在一个作用域中设置字典的值,当测试结束时,字典会被恢复到原始状态。可以用作装饰器、类装饰器或上下文管理

定义:

patch.dict(in_dict, values=(), clear=False, **kwargs)
from unittest.mock import patch

foo = {'key': 'value'}
with patch.dict(foo, {'newkey': 'newvalue'}, clear=True):
    assert foo == {'newkey': 'newvalue'}
    print(foo)

print(foo)
>>>>
{'newkey': 'newvalue'}
{'key': 'value'}

在这里插入图片描述

所有修补程序都有start()和stop()方法。这使得在安装方法中进行修补变得更简单,或者在不使用嵌套装饰器或语句的情况下进行多个修补。然后可以调用start()将修补程序放置到位,调用stop()将其撤消。
如果您正在使用patch()为您创建模拟,则调用patche.start将返回该模拟。

如果是用使用mock.patch的方法,需要用start开始模拟,stop停止模拟。
在这里插入图片描述

MagicMock是Mock的一个子类,具有大多数魔法方法的默认实现。在mock.patch中new参数如果没写,默认创建的是MagicMock。

>>> from unittest import mock
>>> 
>>> a = mock.MagicMock()
>>> 
>>> int(a)
1
>>> len(a)
0
>>> str(a)
"<MagicMock id='139819504851824'>"

在这里插入图片描述
魔法方法:Python 中的类有一些特殊的方法。在python的类中,以两个下画线__开头和结尾的方法如__new__,init 。这些方法统称“魔术方法”(Magic Method)。任意自定义类都会拥有魔法方法。

使用魔术方法可以实现运算符重载,如对象之间使用 == 做比较时,其实是对象中 __eq__实现的。魔法方法类似于对象默认提供的各种方法。

__new__	   创建类并返回这个类的实例
__init__   可理解为“构造函数”,在对象初始化的时候调用,使用传入的参数初始化该实例
__del__	   可理解为“析构函数”,当一个对象进行垃圾回收时调用
__class__
__delattr__
__dict__
__dir__
__doc__
__eq__
__format__
__ge__
__getattribute__
__gt__
__hash__
__init_subclass__
__le__
__lt__
__module__
__ne__
__reduce__
__reduce_ex__
__repr__
__setattr__
__sizeof__
__str__
__subclasshook__
__weakref__

Magic Mock 的默认值:

Magic Mock 实例化之后就会有一些初始值,是一些属性的实现。具体的默认值如下:

__lt__: NotImplemented
__gt__: NotImplemented
__le__: NotImplemented
__ge__: NotImplemented
__int__: 1
__contains__: False
__len__: 0
__iter__: iter([])
__exit__: False
__aexit__: False
__complex__: 1j
__float__: 1.0
__bool__: True
__index__: 1
__hash__: default hash for the mock
__str__: default str for the mock
__sizeof__: default sizeof for the mock

使用MagicMock和Mock的场景:

使用MagicMock:需要魔法方法的场景,如迭代

使用Mock:不需要魔法方法的场景可以用Mock
在这里插入图片描述

pytest是一个测试的框架,能够提供测试场景中的多种功能。这里不讨论别的功能,只说mock。

pytest-mock是一个pytest的插件,安装即可使用。pytest-mock提供了一个mocker对象,在导入pytest时默认导入。

mocker 是对mock的一个兼容,mock有的属性和方法,mocker都有,而且还有自己特有的方法。

mocker对mock的兼容:

mocker.patch
mocker.patch.object
mocker.patch.multiple
mocker.patch.dict
mocker.stopall
mocker.resetall

Mock
MagicMock
PropertyMock
ANY
DEFAULT (Version 1.4)
call (Version 1.1)
sentinel (Version 1.2)
mock_open
seal (Version 3.4)

在这里插入图片描述
特有属性:

1、Type Annotations 类型注解

2、Spy 间谍

3、Stub 存根
在这里插入图片描述

在pytest框架中使用的mock 是pytest-mock,这个模块需要独立安装。

pip install pytest-mock

pytest_demo.py

def test_mock_fun(mocker):
    mock_get_sum = mocker.patch('mock_demo.get_sum')
    mock_get_sum.return_value = 20
    print(mock_demo.get_sum())

运行:

pytest pytest_demo.py
>>>
============================================================== test session starts ==============================================================
platform linux -- Python 3.7.3, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
rootdir: /home/ljk/Desktop
plugins: mock-3.6.1
collected 1 item                                                                                                                                

mock_fun1.py .                                                                                                                            [100%]

=============================================================== 1 passed in 0.02s ===============================================================
(work) ljk@work:~/Desktop$ 

在这里插入图片描述

spy简介:

在所有情况下,mocker.spy对象的行为都与原始方法完全相同,只是spy还跟踪函数/方法调用、返回值和引发的异常。

import os
def test_spy_listdir(mocker):
    mock_listdir = mocker.spy(os, 'getcwd')
    os.getcwd()
    assert mock_listdir.called
pytest pytest_demo.py
>>>
============================================================== test session starts ==============================================================
platform linux -- Python 3.7.3, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
rootdir: /home/ljk/Desktop
plugins: mock-3.6.1
collected 1 item                                                                                                                                

mock_fun1.py .                                                                                                                            [100%]

=============================================================== 1 passed in 0.02s ==============================================================

在这里插入图片描述

存根是一个模拟对象,它接受任何参数,对测试调用非常有用。

stub可以模拟测试对象中的属性,如可以模拟成测试对象中的变量,函数等。将stub实例传入测试对象中,可以获得测试对象内部执行的过程。所以:

Stub 可以跟踪和测试对象的交互,使用在回调函数中十分有效。

def foo(param):
    param('foo', 'bar')


def test_stub(mocker):
    # 模拟成foo中的一个函数
    stub = mocker.stub(name='on_something_stub')

    foo(stub)
    
    # 测试foo中这个函数的调用参数是否正确
    stub.assert_called_once_with('foo', 'bar')

在pytest框架中可以直接使用mock对象。

demo.py

def get_sum(x, y):
    pass

mock_demo.py

from unittest import mock
import demo
import pytest

def test_mock_fun():
    mock_get_sum = mock.patch('demo.get_sum', return_value = 20)
    print(demo.get_sum(1,2))

在这里插入图片描述

mocker兼容mock的功能,但是对于mock.patch的装饰器用法和上下文用法是不支持的。

如果是使用pytest的框架,如pytest-django,或者pytest-flask等,推荐使用mocker来完成模拟。

在这里插入图片描述

最后: 可以关注公众号:伤心的辣条 ! 进去有许多资料共享!资料都是面试时面试官必问的知识点,也包括了很多测试行业常见知识,其中包括了有基础知识、Linux必备、Shell、互联网程序原理、Mysql数据库、抓包工具专题、接口测试工具、测试进阶-Python编程、Web自动化测试、APP自动化测试、接口自动化测试、测试高级持续集成、测试架构开发测试框架、性能测试、安全测试等。

如果我的博客对你有帮助、如果你喜欢我的博客内容,请 “点赞” “评论” “收藏” 一键三连哦!推荐软件测试交流学习群:914172719 里面会分享一些资深架构师录制的视频录像


好文推荐

转行面试,跳槽面试,软件测试人员都必须知道的这几种面试技巧!

面试经:一线城市搬砖!又面软件测试岗,5000就知足了…

面试官:工作三年,还来面初级测试?恐怕你的软件测试工程师的头衔要加双引号…

什么样的人适合从事软件测试工作?

那个准点下班的人,比我先升职了…

测试岗反复跳槽,跳着跳着就跳没了…

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/526127.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

防火墙(firewall)

前言 计算机的安全性历来就是人们热衷的话题之一。而随着Internet的广泛应用&#xff0c;人们在扩展了获取和发布能力的同时也带来信息被污染和破坏的危险。这些安全问题主要是由网络的开放性、无边界性、自由性造成的&#xff0c;还包括以下一些因素。 1. 计算机操作系统本身…

分布式补充技术 01.AOP技术

01.AOP技术是对于面向对象编程&#xff08;OOP&#xff09;的补充。是按照OCP原则进行的编写&#xff0c;(ocp是修改模块权限不行&#xff0c;扩充可以) 02.写一个例子&#xff1a; 创建一个新的java项目&#xff0c;在main主启动类中&#xff0c;写如下代码。 package com.co…

CTSI 基金会储备透明度报告——2023 年 1 月

由于 Cartesi 代币 (CTSI) 的下一次解锁定于 2023 年 1 月 23 日&#xff0c;我们很高兴接着上一份透明度报告&#xff0c;我们本次依旧提供关于 Cartesi 基金会的治理、运营以及 CTSI 代币如何分配的另一份官方透明度报告。 提醒一下&#xff0c;为了保证诚实和可信度&#xf…

软件测试工程师简历项目经验怎么写

软件测试工程师简历项目经验怎么写 面试是我们进入一个公司的门槛&#xff0c;通过了面试才能进入公司&#xff0c;你的面试结果和你的薪资是息息相关的。 在面试之前&#xff0c;不得不聊聊简历&#xff0c;简历是职场的敲门砖&#xff0c;是拿到offer的通行证&#xff0c;那么…

【unity学习记录-场景绘制+物体碰撞,场景物体的层级关系】跟着Unity2D官方入门教程 Ruby‘ Adventure

文章目录 创建tilemap编辑一下资源&#xff0c;瓦片调色对于瓦片没有填满的情况&#xff0c;调整每片瓦片的像素 添加点小树或其他&#xff0c;调整层级给树木增加一些碰撞的效果&#xff0c;调整碰撞范围&#xff0c;角色也要添加刚体人物倒着走路的解决方法&#xff08;解决角…

线程与进程,你真得理解了吗

线程与进程&#xff0c;你真得理解了吗 1 进程与线程的关系和区别2 并行与并发3 线程共享了进程哪些资源 相信大家面试时一定没少被一个问题刁难&#xff0c;那就是进程和线程的区别是什么&#xff1f;这个问题延申开来并不像表面那么简单&#xff0c;今天就来深入一探。 开始…

个人简历html网页代码(使用chatgpt完成web开发课的实验)

使用chatgpt完成web开发课的实验 前提&#xff1a; chatgpt的使用&#xff0c;建议看https://juejin.cn/post/7198097078005841980或者自己随便找 要学会用“出国旅游”软件 vscode的基本使用 炼丹开始&#xff1a; 炼丹材料&#xff1a; 帮我写一个html页面&#xff0c;内…

沁恒 CH32V208(四): CH32V208 网络DHCP示例代码分析

目录 沁恒 CH32V208(一): CH32V208WBU6 评估板上手报告和Win10环境配置沁恒 CH32V208(二): CH32V208的储存结构, 启动模式和时钟沁恒 CH32V208(三): CH32V208 Ubuntu22.04 Makefile VSCode环境配置沁恒 CH32V208(四): CH32V208 网络DHCP示例代码分析 硬件部分 CH32V208WBU6 …

Python 网络爬虫与数据采集(一)

Python 网络爬虫与数据采集 第1章 序章 网络爬虫基础1 爬虫基本概述1.1 爬虫是什么1.2 爬虫可以做什么1.3 爬虫的分类1.4 爬虫的基本流程1.4.1 浏览网页的流程1.4.2 爬虫的基本流程 1.5 爬虫与反爬虫1.5.1 爬虫的攻与防1.5.2 常见的反爬与反反爬 1.6 爬虫的合法性与 robots 协议…

深入理解Java虚拟机:JVM高级特性与最佳实践-总结-3

深入理解Java虚拟机&#xff1a;JVM高级特性与最佳实践-总结-3 垃圾收集器与内存分配策略垃圾收集算法标记-清除算法标记-复制算法标记-整理算法 垃圾收集器与内存分配策略 垃圾收集算法 标记-清除算法 最基础的垃圾收集算法是“标记-清除”&#xff08;Mark-Sweep&#xff…

2023年推荐几款开源或免费的web应用防火墙

2023年推荐几款开源或免费的web应用防火墙 2023年&#xff0c;数字经济将强势崛起&#xff0c;并且成为新一轮经济发展的动力&#xff0c;传统的黑客破坏性攻击如CC&#xff0c;转为更隐蔽的如0day进行APT渗透。所以无论私有服务器还是云厂商如Cloudflare、阿里云、腾讯云等都…

无线安全操作(2)

目录 用户隔离 用户隔离介绍 1、集中式转发方式 2、分布式转发方式 用户隔离配置 用户隔离举例 用户静默排错帮助 ARP抑制 ARP抑制介绍 ARP抑制配置 ARP抑制举例 动态黑名单 动态黑名单概述 动态黑名单配置 动态黑名单举例 动态黑名单排错帮助 无线SAVI 无线…

正月初八,公司复工,我却失业了

昨天&#xff0c;一条吐槽刷屏。 方便大家阅读&#xff0c;原文先贴出来&#xff1a; 正月初八&#xff0c;公司复工&#xff0c;我却失业了。 一大早地铁转公交赶在九点前到达&#xff0c;老板在大门口迎接我们的到来&#xff0c;还发了一个红包&#xff0c;心里暖暖的。 到了…

以太坊EVM源码分析学习记录

EVM 待办清单结构与流程2020年版本的evm结构大致流程 opcodes.gocontract.goanalysis.gostack.gostack_table.goMemory.goMemory_table.goEVM.go区块上下文交易上下文EVM结构以太坊中的调用call、callcode和delegatecall创建合约 interpreter.gojump_table.goinstructions.goga…

极为罕见的大学生现象 凤毛麟角 是参加这种竞赛

大学里有哪些含金量较高&#xff0c;涉及到综合素质加分的竞赛呢&#xff1f; 一定要耐心耐心的看完 对你现在的境地会很有帮助&#xff01;&#xff01;&#xff01; 大学生竞赛大致可以分为综合类和学科类两种。 综合类竞赛面向的范围更大&#xff0c;各个专业的学生均可参…

区块链论文一般发表在哪些地方?

区块链论文一般发表在哪些地方&#xff1f; 区块链论文发表区块链会议区块链会议论文阅读列表区块链相关论文查询论文检索网站 区块链论文发表 会议类&#xff1a; 安全、密码、分布式理论方面的会议&#xff1a;IEEE S&P (Oakland),、ACM CCS,、IACR Crypto、IACR Eurocr…

高通Camera IFE时钟配置

本文主要分享高通camera驱动中minHorizontalBlanking&#xff08;最小水平消隐&#xff09;和minVerticalBlanking&#xff08;最小垂直消隐&#xff09;配置项的计算方法&#xff1b; IFE时钟频率由以下sensor参数所决定&#xff1a; 对应sensor mode的输入IFE的帧尺寸(width…

微信小程序源码1000套

简介 不懂开发&#xff0c;但又想拥有自己的小程序怎么办&#xff1f;或者想要基于某个小程序框架做二次开发&#xff1f;如下截图&#xff0c;免费提供1000套微信小程序源码包合集&#xff08;收集过程中发现网上资源大部分居然还要收费&#xff0c;真的很无语&#xff0c;人…

【TypeScript】TS条件类型(十)

🐱 个人主页:不叫猫先生 🙋‍♂️ 作者简介:2022年度博客之星前端领域TOP 2,前端领域优质作者、阿里云专家博主,专注于前端各领域技术,共同学习共同进步,一起加油呀! 💫优质专栏:vue3从入门到精通、TypeScript从入门到实践 📢 资料领取:前端进阶资料以及文中源…

【burpsuite安全练兵场-服务端9】服务端请求伪造SSRF漏洞-7个实验(全)

前言&#xff1a; 介绍&#xff1a; 博主&#xff1a;网络安全领域狂热爱好者&#xff08;承诺在CSDN永久无偿分享文章&#xff09;。 殊荣&#xff1a;CSDN网络安全领域优质创作者&#xff0c;2022年双十一业务安全保卫战-某厂第一名&#xff0c;某厂特邀数字业务安全研究员&…