目录
💥1 概述
📚2 运行结果
🎉3 参考文献
👨💻4 Matlab代码
💥1 概述
本文提出了一种用于反狙击应用的源定位过程:使用广义互相关(GCC)方法确定到达时间差(TDOA)值。时差值由混合球面插值/最大似然(SI/ML)估计方法用于确定射手位置。
📚2 运行结果
主函数部分代码:
clc; close all; clear all;% N sensors, 1 source. Using sensor 1 as reference i.e (x1=0, y1=0, z1=0) % ----------------------------------------------------- % Definition % ----------------------------------------------------- nRun=100; % number of Monte Carlo runs % uncomment one of them bML=0; % turn off ML calculation %bML=1; % turn on ML calculation % uncomment one of them perturb=0; % turn off location perturbation % perturb=1; % turn on location perturbation % ---------------------------------------------------------------- % Actual source location (m) in Cartesian coordinates x, y and z % Note: For simplicity, we only varies y for our simulation % ---------------------------------------------------------------- xs_src_actual=[0]; % Varies the Y position (Choose 1) %------------------------------------ ys_src_actual=[100]; %100 m zs_src_actual=[0]; Rs_actual=sqrt(xs_src_actual.^2 + ys_src_actual.^2 + zs_src_actual.^2); % calculate corresponding range Rs bearing_actual=[xs_src_actual; ys_src_actual; zs_src_actual]/Rs_actual; % calculate corresponding bearing % ---------------------------------------------------------------- % Actual sensor location (m) in Cartesian coordinates x, y and z % Note: For simplicity, we only use integers and then multiply with % a scaling factor to produce the actual coordinates. % e.g. [5 10 15] = [1 2 3] * 5 ; % ---------------------------------------------------------------- % Scale wrt to 1m (Choose 1) %------------------------------ scale_dist = 10; % 10 m % (Choose 1 of the following sensor configuration for study) %------------------------------------------------------------- % 12x2 sensors arranged 2 rows xi=[0 0 1 1 2 2 3 3 4 4 5 5 0 0 1 1 2 2 3 3 4 4 5 5 ].*scale_dist; yi=[0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1].*scale_dist; zi=[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1].*1.0; %20x2 sensors arranged 2 rows % xi=[0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9].*scale_dist; % yi=[0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1].*scale_dist; % zi=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1].*1.0; % % Soldier configuration (each with 2 sensors). z= 1m apart vertically temp=size(xi); nSen=temp(1,2); % number of sensor (>4) noisestd=1; if (perturb==1) randn('state',0); tmp1=randn(3, nSen); for i=1:2:nSen xi(i)= xi(i) + noisestd*tmp1(1,i); xi(i+1)= xi(i+1)+(noisestd+0.01)*tmp1(1,i); % less variance on the body yi(i)= yi(i) + noisestd*tmp1(2,i); yi(i+1)= yi(i+1)+(noisestd+0.01)*tmp1(2,i); % less variance on the body end zi=zi+0.01*tmp1(3,:); % less variance on the body end % RD noise (Choose 1) % ----------------------------------------------------- Noise_Factor=0.02; % noise std = Std_Norm * (source distance). %we expect bigger noise variance for larger distance. Noise_Var=(Noise_Factor*Rs_actual)^2; % ----------------------------------------------------- % Functions % ----------------------------------------------------- % Random Process % AWGN randn('state',0); noise = sqrt(Noise_Var)*randn(nRun, 1); %noise_mean = mean(noise, 2); % average along row for k=1:nRun % Monte Carlo Simulation Xi=[xi' yi' zi']; Di= sqrt ((xi-xs_src_actual).^2 + (yi-ys_src_actual).^2 + (zi-zs_src_actual).^2);%distance between source ans sensor i Ri= sqrt ((xi).^2 + (yi).^2 + (zi).^2);%distance between origin and sensor i locSen=[xi' yi' zi']; % using N sensors for i=1:nSen-1 %d21=Di(2)-Di(1); %d31=Di(3)-Di(1);.. %dn1=Di(n)-Di(1); %d=[d21;d31;...;dn1]; d(i,1)=Di(i+1)-Di(1)+noise(k); %add noise to RD estimates%distance between sensor i,1 % delta2=Ri(2)^2-d(1)^2; % delta3=Ri(3)^2-d(1)^2;... % deltan=Ri(n)^2-d(1)^2; % delta=[delta2;delta3;...deltan]; delta(i,1)=Ri(i+1)^2-d(1)^2;%delta % s2= [xi(2) yi(2) zi(2)]; % s3= [xi(3) yi(3) zi(3)];... % sn= [xi(n) yi(n) zi(n)]; % s=[s2;s3;...sn]; s(i,:)=[xi(i+1) yi(i+1) zi(i+1)]; end
🎉3 参考文献
[1]高强. 基于传感器网络的室内人员定位算法研究[D].东北大学,2011.
部分理论引用网络文献,若有侵权联系博主删除。