我们经常所听到的大数据、商业智能BI、数据分析、数据挖掘等我们都统称为数据信息化。数据信息化可以帮助企业全面的了解企业的经营管理,从经验驱动到数据驱动,降低情绪、心理等主观影响,形成以数据为基础的业务决策支撑,提高决策的准确性,这是企业更高层次的企业管理方式。
商业智能BI - 派可数据商业智能BI可视化分析平台
信息化建设具有连贯性,没有业务系统的建设,就不会有数据的沉淀,而没有数据的沉淀,就没有建设商业智能 BI 的基础。同时,商业智能 BI 的建设能够反向推动业务信息化的建设,优化业务流程的同时提高数据的质量。
一、 BI商业智能与报表软件有什么区别?
报表是数据展示工具,商业智能BI是数据分析工具。
报表工具顾名思义就是制作各类数据报表、图形报表的工具,甚至还可以制作电子发票联、流程单、收据等等。
商业智能不单单是一个工具,更应该是一种解决方案。简单来说,商业智能BI指的就是主要由数据仓库、数据分析、查询报表、数据可视化组成的数据类技术解决方案,可以将海量杂乱的数据转化为可用的信息,满足企业不同人群对数据查询、数据分析和数据挖掘的需求,从而为业务和管理人员提供信息支撑,促进业务发展,辅助进行决策。
商业智能BI - 派可数据商业智能BI可视化分析平台
对于企业来说,商业智能BI的功能非常丰富,可以有效解决企业在处理数据相关流程时遇到的问题。当然除了各种功能模块,商业智能BI主要负责实现业务流程和业务数据的规范化、流程化、标准化,打通ERP、OA、CRM等不同业务信息系统,整合归纳企业数据,利用数据可视化满足企业不同人群对数据查询、分析和探索的需求,从而为管理和业务提供数据依据和决策支持。
两者最明显的区别,报表主要是IT开发人员制作并且服务于业务流程,比如销售报表、供应链生产报表。而BI商业智能也能做报表,但BI的报表形式更简单,操作起来自然更方便,报表的字段大多拖拖拽拽到维度框指标框中,形成报表,使用者有IT人员也可以是业务分析者。
二、商业智能BI
商业智能工具侧重于数据分析,所以在报表制作难度上大大降低,但换来的代价是,不能制作复杂的报表。不同于传统做表的方式,他的目的在于将大数据量的数据快速的进行模型构建,进行展示。相比报表,侧重点在于分析,优势在于操作简单、数据处理量大,分析快速。
1、简单报表
商业智能BI - 派可数据商业智能BI可视化分析平台
2、可视化图表更侧重分析作用,主要是通过数据可视化更直观地发现业务运营过程中存在的问题,以更好地帮助业务人员调整工作策略。
可视化大屏 - 派可数据商业智能BI可视化分析平台
3、数据分析
数据分析功能是BI工具的重中之重。目前市面上很多BI软件采取的都是OLAP分析模式。OLAP也被称为多维分析,它的目标是满足决策支持或者满足在多维环境下特定的查询和报表需求,其技术核心是“维”这个概念,“维”一般包含着层次关系。具体来说就是OLAP能够对数据采取切片、切块、钻取、旋转等各种分析动作,以求剖析数据,让使用者能从多个角度、多侧面地观察数据库中的数据,从而深入理解包含在数据中的信息。
三、 BI商业智能与报表软件的其他区别
1、从面向群体来讲,报表主要面向IT开发者,或者某些企业专门设置的报表开发人员。因为需要一定的数据库知识和少量的JS;商业智能主要面向业务人员、数据分析人员,让他们不用给IT提需求,可以自给自足。操作简单,侧重分析。两者最后的报表和数据分析结果都是给领导、管理层看的,他们通过分析结果来制定决策。
2、从背后的技术架构来讲。商业智能可以处理更大的数据量,常常基于企业搭建的数据平台,连接数据仓库进行分析,但有些报表工具也可以完成这一部分工作。
商业智能BI - 派可数据商业智能BI可视化分析平台
3、最后,两者的关系可交叉可递进,关键还是取决于企业需求,业务需求,也并不能绝对的判断好坏,各有优势,各有适用环境。
四、谁是商业智能BI的主要用户
业务信息化的主要使用对象:一线业务执行层,更多是从业务视角出发,录入数据、记录流程、查看业务信息。
数据信息化的主要使用对象:管理决策层,更多的是从管理视角通过商业智能BI可视化分析去定位问题、分析问题,最终形成业务决策。
商业智能BI - 派可数据商业智能BI可视化分析平台
两个细节要点:
1、没有任何一个管理决策层、领导会没事打开财务系统看财务数据,打开 OA 系统看看合同信息,高层领导不会看这些明细数据细节,也不会进到各个系统里面去看。也就是说,业务信息化不是给这一层领导来使用的。
2、管理决策层是不是一定是指的企业最高层的领导,不见得,可以是企业各个组织层次中带有管理决策属性的人员,这些管理决策人员都可以通过商业智能BI提供决策支持。
五、 企业如何选择适合自己的BI?
不同的行业,不同的企业,其BI需求是不同的。企业首先明确自己的业务类型、企业规模、目前的经营状况。对于数据知识发现的方法和手段多种多样,前提是要对业务本身有深刻理解,同时清楚地知道BI的终极目标,然后再考虑BI的可扩展性、售后服务以及迭代更新模式等。
BI选型关注的要点,供大家参考:
1)轻量型:很多BI平台重在开发,对研发资源的要求高且对接慢,后期维护繁琐。如果企业没有相应的资源支持,建议选择轻量的平台,能够快速上手,维护成本低。
2)方便易懂:数据分析的结果最终是要赋能业务端,但是业务端用户尚缺乏专业的数据分析能力,建议对BI的选择要考虑产品的易用性和学习成本。
3)创新灵活:我们很难预估未来数据分析需要什么样的程度,所以在选择之前一定要足够考虑BI平台的创新能力,例如是否有异常检测、智能诊断、AI预测引擎、算法扩展等功能模块。