linux驱动开发 - 08_内核定时器

news2024/9/29 13:17:24

文章目录

    • 1 Linux 时间管理和内核定时器简介
      • 1.1 内核时间管理简介
      • 1.2 内核定时器简介
        • 1、init_timer 函数
        • 2、add_timer 函数
        • 3、del_timer 函数
        • 4、del_timer_sync 函数
        • 5、mod_timer 函数
      • 1.3 Linux 内核短延时函数
    • 2 实验程序编写
      • 2.1 定时器驱动程序编写
      • 2.2 编写测试 APP
    • 3 编译驱动程序和测试 APP
      • 3.1 编译驱动程序
      • 3.2 编译测试 APP
    • 4 运行测试

1 Linux 时间管理和内核定时器简介

1.1 内核时间管理简介

  • Linux 内核中有大量的函数需要时间管理,比如周期性的调度程序、延时程序、对于驱动编写者来说最常用的定时器。

  • 硬件定时器提供时钟源,时钟源的频率可以设置, 设置好以后就周期性的产生定时中断系统使用定时中断来计时。中断周期性产生的频率就是系统频率,也叫做节拍率(tick rate)(叫系统频率),比如 1000Hz, 100Hz 等等说的就是系统节拍率。系统节拍率是可以设置的,单位是 Hz

在编译 Linux 内核的时候可以通过图形化界面设置系统节拍率,按照如下路径打开配置界面:

make menuconfig

-> Kernel Features
	-> Timer frequency (<choice> [=y])

选中“Timer frequency”

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MDpZDPH6-1683117160906)(pic/8-1 系统节拍率设置.png)]

可以看出,可选的系统节拍率为 100Hz、 200Hz、 250Hz、 300Hz、 500Hz 和 1000Hz,默认情况下选择 100Hz。设置好以后打开 Linux 内核源码根目录下的.config 文件,在此文件中

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-N8S32eGi-1683117160907)(pic/8-2 系统节拍率.png)]
CONFIG_HZ 为 100, Linux 内核会使用 CONFIG_HZ 来设置自己的系统时钟。

打开文件 include/asm-generic/param.h,有如下内容:

6 # undef HZ
7 # define HZ CONFIG_HZ
8 # define USER_HZ 100
9 # define CLOCKS_PER_SEC (USER_HZ)

第 7 行定义了一个宏 HZ,宏 HZ 就是 CONFIG_HZ,因此 HZ=100,编写 Linux驱动的时候会用到 HZ,因为 HZ 表示一秒的节拍数,也就是频率。

  • 系统节拍率默认为 100Hz 的时候都会有疑问,怎么这么小? 100Hz 是可选的节拍率里面最小的。为什么不选择大一点的呢?这里就引出了一个问题:高节拍率和低节拍率的优缺点:

①、高节拍率会提高系统时间精度,如果采用 100Hz 的节拍率,时间精度就是 10ms,采用1000Hz 的话时间精度就是 1ms,精度提高了 10 倍。高精度时钟的好处有很多,对于那些对时间要求严格的函数来说,能够以更高的精度运行,时间测量也更加准确。
②、高节拍率会导致中断的产生更加频繁,频繁的中断会加剧系统的负担, 1000Hz 和 100Hz的系统节拍率相比,系统要花费 10 倍的“精力”去处理中断。中断服务函数占用处理器的时间增加,但是现在的处理器性能都很强大,所以采用 1000Hz 的系统节拍率并不会增加太大的负载压力。根据自己的实际情况,选择合适的系统节拍率,本教程我们全部采用默认的 100Hz 系统节拍率。

  • Linux 内核使用全局变量 jiffies 来记录系统从启动以来的系统节拍数,系统启动的时候会将 jiffies 初始化为 0, jiffies 定义在文件 include/linux/jiffies.h 中,定义如下:
76 extern u64 __jiffy_data jiffies_64;
77 extern unsigned long volatile __jiffy_data jiffies;

jiffies_64 和 jiffies 其实是同一个东西, jiffies_64 用于 64 位系统,而 jiffies 用于 32 位系统。为了兼容不同的硬件, jiffies 其实就是 jiffies_64 的低 32 位, jiffies_64 和 jiffies 的结构如图

在这里插入图片描述

访问的是 jiffies_64 的低 32 位,使用 get_jiffies_64 这个函数可以获取 jiffies_64 的值。在 32 位的系统上读取 jiffies 的值,在 64 位的系统上 jiffes 和 jiffies_64表示同一个变量,因此也可以直接读取 jiffies 的值。所以不管是 32 位的系统还是 64 位系统,都可以使用 jiffies。

  • HZ 表示每秒的节拍数, jiffies 表示系统运行的 jiffies 节拍数,所以 jiffies/HZ 就是系统运行时间,单位为秒。

不管是 32 位还是 64 位的 jiffies,都有溢出的风险,溢出以后会重新从 0 开始计数,相当于绕回来了,将这个现象也叫做绕回。 假如 HZ 为最大值 1000 的时候, 32 位的 jiffies 只需要 49.7 天就发生了绕回,对于 64 位的 jiffies 来说大概需要5.8 亿年才能绕回

处理 32 位 jiffies 的绕回显得尤为重要,Linux 内核提供了几个 API 函数来处理绕回

函数描述
time_after(unkown, known)unkown 通常为 jiffies, known 通常是需要对比的值。
time_before(unkown, known)
time_after_eq(unkown, known)
time_before_eq(unkown, known)
  • 如果 unkown 超过 known 的话, time_after 函数返回真 ,否则返回假。
  • 果 unkown 没有超过 known 的话 time_before 函数返回真,否则返回假。
  • time_after_eq 函数和 time_after 函数类似,只是多了判断等于这个条件。同理, time_before_eq 函数和 time_before 函数也类似。

要判断某段代码执行时间有没有超时,此时就可以使用如下所示代码:

1 unsigned long timeout;
2 timeout = jiffies + (2 * HZ); /* 超时的时间点 */
3 
4	/*************************************
5 	具体的代码
6 	************************************/
7 
8	/* 判断有没有超时 */
9 	if(time_before(jiffies, timeout)) {
10 		/* 超时未发生 */
11 	} else {
12 		/* 超时发生 */
13 	}

timeout 就是超时时间点,比如我们要判断代码执行时间是不是超过了 2 秒,那么超时时间点就是 jiffies+(2*HZ),如果 jiffies 大于 timeout 那就表示超时了,否则就是没有超时。

通过函数 time_before 来判断 jiffies 是否小于 timeout,如果小于的话就表示没有超时。

为了方便开发, Linux 内核提供了几个 jiffies 和 ms、 us、 ns 之间的转换函数

函数描述
int jiffies_to_msecs(const unsigned long j)将 jiffies 类型的参数 j 分别转换为对应的毫秒、 微秒、纳秒。
int jiffies_to_usecs(const unsigned long j)
u64 jiffies_to_nsecs(const unsigned long j)
long msecs_to_jiffies(const unsigned int m)将毫秒、微秒、纳秒转换为 jiffies 类型。
long usecs_to_jiffies(const unsigned int u)
unsigned long nsecs_to_jiffies(u64 n)

1.2 内核定时器简介

  • 定时器是一个很常用的功能,需要周期性处理的工作都要用到定时器。

  • Linux 内核定时器使用很简单,只需要提供超时时间(相当于定时值)和定时处理函数即可,当超时时间到了以后设置的定时处理函数就会执行 ,使用内核定时器不需要做一大堆的寄存器初始化工作。

  • 要注意一点,内核定时器并不是周期性运行的,超时以后就会自动关闭,因此如果想要实现周期性定时,那么就需要在定时处理函数中重新开启定时器。

Linux 内核使用 timer_list 结构体表示内核定时器, timer_list 定义在文件nclude/linux/timer.h 中,定义如下

struct timer_list {
    struct list_head entry;
    unsigned long expires; 				/* 定时器超时时间,单位是节拍数 */
    struct tvec_base *base;
    
    void (*function)(unsigned long); 	/* 定时处理函数 */
    unsigned long data; 				/* 要传递给 function 函数的参数 */
    
    int slack;
};
  • 要使用内核定时器首先要先定义一个 timer_list 变量,表示定时器, tiemr_list 结构体的expires 成员变量表示超时时间,单位为节拍数。

  • 比如需要定义一个周期为 2 秒的定时器,那么这个定时器的超时时间就是 jiffies+(2HZ),因此 expires=jiffies+(2HZ)。

  • function 就是定时器超时以后的定时处理函数,要做的工作就放到这个函数里面,需要编写这个定时处理函数。

需要通过一系列的 API 函数来初始化此定时器,这些函数如下:

1、init_timer 函数

init_timer 函数负责初始化 timer_list 类型变量,当定义了一个 timer_list 变量以后一定要先用 init_timer 初始化一下。 init_timer 函数原型如下:

void init_timer(struct timer_list *timer)
函数参数和返回值含义如下:
timer:要初始化定时器。
返回值: 没有返回值。

2、add_timer 函数

add_timer 函数用于向 Linux 内核注册定时器,使用 add_timer 函数向内核注册定时器以后,定时器就会开始运行,函数原型如下:

void add_timer(struct timer_list *timer)
函数参数和返回值含义如下:
timer:要注册的定时器。
返回值: 没有返回值。  

3、del_timer 函数

del_timer 函数用于删除一个定时器,不管定时器有没有被激活,都可以使用此函数删除。在多处理器系统上,定时器可能会在其他的处理器上运行,因此在调用 del_timer 函数删除定时器之前要先等待其他处理器的定时处理器函数退出。 del_timer 函数原型如下:

int del_timer(struct timer_list * timer)
函数参数和返回值含义如下:
timer:要删除的定时器。
返回值: 0,定时器还没被激活; 1,定时器已经激活。  

4、del_timer_sync 函数

del_timer_sync 函数是 del_timer 函数的同步版,会等待其他处理器使用完定时器再删除,del_timer_sync 不能使用在中断上下文中。

del_timer_sync 函数原型如下所示:

int del_timer_sync(struct timer_list *timer)
函数参数和返回值含义如下:
timer:要删除的定时器。
返回值: 0,定时器还没被激活; 1,定时器已经激活。

5、mod_timer 函数

mod_timer 函数用于修改定时值,如果定时器还没有激活的话, mod_timer 函数会激活定时器!函数原型如下:

int mod_timer(struct timer_list *timer, unsigned long expires)
函数参数和返回值含义如下:
timer:要修改超时时间(定时值)的定时器。
expires:修改后的超时时间。
返回值: 0,调用 mod_timer 函数前定时器未被激活; 1,调用 mod_timer 函数前定时器已被激活  
  • 内核定时器一般的使用流程
struct timer_list timer; /* 定义定时器 */

/* 定时器回调函数 */
void function(unsigned long arg
{
    /*
    * 定时器处理代码
    */

    /* 如果需要定时器周期性运行的话就使用 mod_timer
    * 函数重新设置超时值并且启动定时器。
    */
    mod_timer(&dev->timertest, jiffies + msecs_to_jiffies(2000));
}

/* 初始化函数 */
void init(void)
{
    init_timer(&timer); /* 初始化定时器 */

    timer.function = function; /* 设置定时处理函数 */
    timer.expires=jffies + msecs_to_jiffies(2000);/* 超时时间 2 秒 */
    timer.data = (unsigned long)&dev; /* 将设备结构体作为参数 */

    add_timer(&timer); /* 启动定时器 */
}

/* 退出函数 */
void exit(void)
{
    del_timer(&timer); /* 删除定时器 */
    /* 或者使用 */
    del_timer_sync(&timer);
}

1.3 Linux 内核短延时函数

需要在内核中实现短延时,尤其是在 Linux 驱动中。 Linux 内核提供了毫秒、微秒和纳秒延时函数

函数描述
void ndelay(unsigned long nsecs)纳秒、微秒和毫秒延时函数。
void udelay(unsigned long usecs)
void mdelay(unsigned long mseces)

2 实验程序编写

使用内核定时器周期性的点亮和熄灭开发板上的 LED 灯, LED 灯的闪烁周期由内核定时器来设置,测试应用程序可以控制内核定时器周期。

2.1 定时器驱动程序编写

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/timer.h>
#include <linux/jiffies.h>

#define TIMER_CNT        1
#define TIMER_NAME       "timer"

#define CLOSE_CMD         _IO(0XEF, 1)          //关闭命令
#define OPEN_CMD          _IO(0XEF, 2)          //打开命令
#define SETPERIOD_CMD     _IOW(0XEF, 3, int)    //设置周期

/* timer设备结构体 */
struct timer_dev{
    dev_t devid;                /* 设备号 	 */
    struct cdev cdev;           /* cdev 	*/
    struct class* class;        /* 类 		*/
    struct device* device;      /* 设备 	 */
    int major;                  /* 主设备号	  */
    int minor;                  /* 次设备号   */
    struct device_node* nd;     /* 设备节点 */
    int led_gpio;               /* led所使用的GPIO编号		*/
    struct timer_list timer;    /* 定时器 */
    int timeperiod;             /*  定时周期ms */
};

struct timer_dev timerdev;     /* led设备 */

/*
 * @description		: 打开设备
 * @param - inode 	: 传递给驱动的inode
 * @param - filp 	: 设备文件,file结构体有个叫做private_data的成员变量
 * 					  一般在open的时候将private_data指向设备结构体。
 * @return 			: 0 成功;其他 失败
 */
static int timer_open(struct inode* inode, struct file* filp)
{
    filp->private_data = &timerdev;
    return 0;
}

/*
 * @description		: 关闭/释放设备
 * @param - filp 	: 要关闭的设备文件(文件描述符)
 * @return 			: 0 成功;其他 失败
 */
static int timer_release(struct inode* inode, struct file* filp)
{
    return 0;
}

static long timer_ioctl(struct file* filp, unsigned int cmd, unsigned long arg)
{
    int ret = 0;
    int value = 0;
    struct timer_dev* dev = filp->private_data;

    switch (cmd) {
	case CLOSE_CMD:
        del_timer_sync(&dev->timer);
		break;
	case OPEN_CMD:
        mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->timeperiod));
		break;
	case SETPERIOD_CMD:
        ret = copy_from_user(&value, (int *)arg, sizeof(int));
        if(ret < 0) {
            return -EFAULT;
        }

        dev->timeperiod = value;
        mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->timeperiod));
		break;
	}

    return ret;
}



/* 设备操作函数 */
static struct file_operations timerdev_fops = {
    .owner = THIS_MODULE,
	.open = timer_open,
    .unlocked_ioctl = timer_ioctl,
	.release = 	timer_release
};

/* 定时器处理函数 */
static void timer_func(unsigned long arg)
{
    struct timer_dev *dev = (struct timer_dev*)arg;
    static int sta = 1;

    sta = !sta;
    gpio_set_value(dev->led_gpio, sta);

    mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->timeperiod));
}


/*初始化LED灯*/
int led_init(struct timer_dev* dev)
{
    int ret = 0;

    /* 1,获取设备节点 */
    dev->nd = of_find_node_by_path("/gpioled");
    if(dev->nd == NULL) {
        ret = -EINVAL;
        goto fail_fd;
    }

    /* 2, 获取LED所对应的GPIO */
    dev->led_gpio = of_get_named_gpio(dev->nd, "led-gpio", 0);
    if(dev->led_gpio < 0) {
        printk("can't find led gpio\r\n");
        ret = -EINVAL;
        goto fail_gpio;
    }
    printk("led gpio num = %d\r\n", dev->led_gpio);

    /* 3,申请IO 
    ret = gpio_request(dev->led_gpio, "led-gpio");
	if (ret) {
		printk("Failed to request the led gpio\r\n");
		ret = -EINVAL;
        goto faile_request;
	}*/

    /* 4,使用IO,设置为输出 */
    ret = gpio_direction_output(dev->led_gpio, 1);  /* 设置输出,默认关灯 */
    if(ret < 0) {
       ret = -EINVAL;
       goto fail_gpioset;
   }

fail_gpioset:
    gpio_free(dev->led_gpio);
//faile_request:
fail_gpio:
fail_fd:
    return ret;
}

/*
 * @description	: 驱动出口函数
 * @param 		: 无
 * @return 		: 无
 */
static int __init timer_init(void)
{
    int ret = 0;

    /* 注册字符设备驱动 */
	/* 1、创建设备号 */
	if (timerdev.major) {		/*  定义了设备号 */
		timerdev.devid = MKDEV(timerdev.major, 0);
		register_chrdev_region(timerdev.devid, TIMER_CNT, TIMER_NAME);
	} else {						/* 没有定义设备号 */
		alloc_chrdev_region(&timerdev.devid, 0, TIMER_CNT, TIMER_NAME);	/* 申请设备号 */
		timerdev.major = MAJOR(timerdev.devid);	/* 获取分配号的主设备号 */
		timerdev.minor = MINOR(timerdev.devid);	/* 获取分配号的次设备号 */
	}
    if(ret < 0){
        goto fail_devid;
    }
	printk("timerdev major=%d,minor=%d\r\n",timerdev.major, timerdev.minor);	
	
	/* 2、初始化cdev */
	timerdev.cdev.owner = THIS_MODULE;
	cdev_init(&timerdev.cdev, &timerdev_fops);
	
	/* 3、添加一个cdev */
	cdev_add(&timerdev.cdev, timerdev.devid, TIMER_CNT);
    if (ret)
		goto fail_cdevadd;

	/* 4、创建类 */
	timerdev.class = class_create(THIS_MODULE, TIMER_NAME);
	if (IS_ERR(timerdev.class)) {
		return PTR_ERR(timerdev.class);
        goto fail_class;
	}

	/* 5、创建设备 */
	timerdev.device = device_create(timerdev.class, NULL, timerdev.devid, NULL, TIMER_NAME);
	if (IS_ERR(timerdev.device)) {
		return PTR_ERR(timerdev.device);
        goto fail_device;
	}

    /* 5、初始化LED灯 */
    led_init(&timerdev);
    if(ret < 0) {
        goto fail_ledinit;
    }

    /* 7,初始化定时器 */
    init_timer(&timerdev.timer);                    /* 初始化定时器 */

    timerdev.timeperiod = 500;                      /* 设置定时周期 */
    timerdev.timer.function = timer_func;;          /* 设置定时处理函数 */
    timerdev.timer.expires = jiffies + msecs_to_jiffies(timerdev.timeperiod);   /* 超时时间 500 毫秒 */
    timerdev.timer.data = (unsigned long)&timerdev;  /* 将设备结构体作为参数 */                                        

    add_timer(&timerdev.timer);                              /* 启动定时器 */

    return 0;

fail_ledinit:
fail_device:
    class_destroy(timerdev.class);
fail_class:
    cdev_del(&timerdev.cdev);
fail_cdevadd:
    unregister_chrdev_region(timerdev.devid, TIMER_CNT);
fail_devid:
    return ret;
}

/*
 * @description	: 驱动出口函数
 * @param 		: 无
 * @return 		: 无
 */
static void __exit timer_exit(void)
{
    /* 关灯 */
    gpio_set_value(timerdev.led_gpio, 1);

    /*  删除定时器 */
    del_timer(&timerdev.timer);

    /* 注销字符设备驱动 */
    cdev_del(&timerdev.cdev);
    unregister_chrdev_region(timerdev.devid, TIMER_CNT);

    device_destroy(timerdev.class, timerdev.devid);
    class_destroy(timerdev.class);

    /* 释放IO */
    //gpio_free(timerdev.led_gpio);
}

module_init(timer_init);
module_exit(timer_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("kaka");
  • 函数 timer_ioctl,对应应用程序的 ioctl 函数,应用程序调用 ioctl函数向驱动发送控制信息,此函数响应并执行。此函数有三个参数: filp, cmd 和 arg,其中 filp是对应的设备文件, cmd 是应用程序发送过来的命令信息, arg 是应用程序发送过来的参数.
  • 共有三种命令 CLOSE_CMD, OPEN_CMD 和 SETPERIOD_CMD,这三个命令分别为关闭定时器、打开定时器、设置定时周期。这三个命令的左右如下:
    • CLOSE_CMD: 关闭定时器命令, 调用 del_timer_sync 函数关闭定时器。
    • OPEN_CMD:打开定时器命令,调用 mod_timer 函数打开定时器,定时周期为 timerdev 的timeperiod 成员变量,定时周期默认是 1 秒。
    • SETPERIOD_CMD:设置定时器周期命令,参数 arg 就是新的定时周期,设置 timerdev 的timeperiod 成员变量为 arg 所表示定时周期指。并且使用 mod_timer 重新打开定时器,使定时器以新的周期运行。

2.2 编写测试 APP

测试 APP 要实现的内容如下:
①、运行 APP 以后提示我们输入要测试的命令,输入 1 表示关闭定时器、输入 2 表示打开定时器,输入 3 设置定时器周期。
②、如果要设置定时器周期的话,需要让用户输入要设置的周期值,单位为毫秒。

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
/*
 *argc:应用程序参数个数
 *argv[]:具体的参数内容,字符串形式 
 *./timerAPP  <filename>  
 * ./timerAPP /dev/timer
 */

#define CLOSE_CMD           _IO(0XEF, 1)           //关闭命令               
#define OPEN_CMD            _IO(0XEF, 2)          //打开命令             
#define SETPERIOD_CMD       _IOW(0xEF, 3, int)    //设置周期

int main(int argc, char *argv[])
{
    int fd, ret;
    char *filename;
    unsigned char databuf[1];
    unsigned int cmd;
    unsigned int arg;
    unsigned char str[100];

    if(argc != 2) {
        printf("Error Usage!\r\n");
        return -1;
    }

    filename = argv[1];

    fd = open(filename, O_RDWR);
    if(fd < 0) {
        printf("file %s open failed!\r\n", filename);
        return -1;
    }

    /* 循环读取 */
    while(1) {
        printf("Input CMD:");
        ret = scanf("%d", &cmd);
        if(ret !=1 ) {
            gets(str);  /* 防止卡死 */
        }

        if(cmd == 1) {          /* 关闭 */
            ioctl(fd, CLOSE_CMD, &arg);  
        } else if(cmd == 2) {   /* 打开 */
            ioctl(fd, OPEN_CMD, &arg); 
        } else if(cmd == 3) {    /* 设置周期 */
            printf("Input Timer period:");
            ret = scanf("%d", &arg);
            if(ret !=1 ) {
                gets(str);
            }
            ioctl(fd, SETPERIOD_CMD, &arg); 
        }
    }

    close(fd);

    return 0;
}

3 编译驱动程序和测试 APP

3.1 编译驱动程序

编写 Makefile 文件

KERNELDIR := /home/kaka/linux/IMX6ULL/linux-imx-rel_imx_4.1.15_2.1.0_ga_alientek

CURRENT_PATH := $(shell pwd)

obj-m := timer.o

build: kernel_modules

kernel_modules:
	$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) modules
	arm-linux-gnueabihf-gcc timerAPP.c -o timerAPP

clean:
	$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean

输入如下命令编译出驱动模块文件:

make -j32

编译成功以后就会生成一个名为“timer.ko ”的驱动模块文件。

3.2 编译测试 APP

arm-linux-gnueabihf-gcc timerAPP.c -o timerAPP

4 运行测试

将编译出来的led.ko和ledApp这两个文件拷贝到rootfs/lib/modules/4.1.15目录中 ,输入如下命令加载 timer.ko 驱动模块:

depmod //第一次加载驱动的时候需要运行此命令
modprobe timer.ko //加载驱动

驱动加载成功以后会在终端中输出一些信息

/lib/modules/4.1.15 # modprobe timer.ko
timerdev major=249,minor=0
led gpio num = 3

驱动加载成功以后如下命令来测试:

/timerApp /dev/timer

输入上述命令以后终端提示输入命令

/lib/modules/4.1.15 # ./timerAPP /dev/timer
Input CMD:

输入“2”,打开定时器,此时 LED 灯就会以默认的 1 秒周期开始闪烁。在输入“3”来设置定时周期,根据提示输入要设置的周期值

Input CMD:3
Input Timer period:1000

输入“1000”,表示设置定时器周期值为 1000ms,设置好以后 LED 灯就会以 1000ms 为间隔,开始闪烁。最后可以通过输入“1”来关闭定时器,如果要卸载驱动的话输入如下命令即可:

rmmod timer.ko

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/486065.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux】管道

目录 一、前言 二、管道 1、匿名管道 1.1、基本原理 1.2、代码实现 1.3、管道的特点 1.4、基于管道的简单设计 2、命名管道 2.1、匿名管道与命名管道的区别 2.2、代码实现命名管道通信 一、前言 为了满足各种需求&#xff0c;进程之间是需要通信的。进程间通信的主要目…

【VM服务管家】专题_7.5 异常收集

目录 5.1 信息收集&#xff1a;异常报错信息收集的方法5.2 日志等级&#xff1a;日志等级调低的方法 5.1 信息收集&#xff1a;异常报错信息收集的方法 描述 环境&#xff1a;VM4.0以上VS2013及以上 现象&#xff1a;未知问题、偶发问题、崩溃问题如何收集信息提供给研发排查。…

【Linux】基础IO——库函数与系统调用的关系

目录 引言1.文件操作语言方案&#xff08;C的文件操作接口-库函数&#xff09;打开文件、关闭文件——fopen、fclose打开文件的模式 写入——fput、printf读取——fgets 2.文件操作系统方案&#xff08;系统的文件操作接口-系统调用&#xff09;打开文件、关闭文件——open、cl…

【游戏逆向】Lua游戏逆向及破解方法介绍

前言 随着手游的发展&#xff0c;越来越多的Cocos-lua端游开发者转移到手游平台。Lua脚本编写逻辑的手游也是越来越多&#xff0c;如梦幻西游、刀塔传奇、开心消消乐、游龙英雄、奇迹暖暖、疾风猎人、万万没想到等手游。随着Lua手游的增加&#xff0c;其安全性更值得关注&…

python基本数据类型---数字字符串

引入 在内存中存储的数据可以是不同的数据类型。比如名字可以使用字符串存储&#xff0c;年龄可以使用数字存储&#xff0c;python有6种基本数据类型&#xff0c;用于各种数据的存储&#xff0c;分别是&#xff1a;numbers(数字类型)、string(字符串)、List(列表)、Tuple(元组…

哈希表企业应用-DNA的字符串检测

DNA的字符串检测-引言 若干年后, ikun DNA 检测部成立,专门对 这些ikun的解析检测 突然发现已经完全控制不了 因为学生已经会了 而且是太会了 所以DNA采用 以下视频测试: ikun必进曲 ikun必经曲 ikun必阶曲 如何感受到了吧!,如果你现在唱跳并且还Rap 还有打篮球 还有铁山靠 那…

自动化运维工具Ansible之playbooks剧本

目录 一、playbooks 1、playbooks简述 2、playbooks剧本格式 3、playbooks组成部分 4、playbooks启动及检测 5、playbooks模块实战实例1 6、vars模块实战实例2 7、when模块实战实例3 8、with_items循环模块实战实例4 9、template模块实战实例5 10、tags模块实战实例…

有研究员公开了一个解析并提取 Dell PFS BIOS 固件的工具(上)

导语&#xff1a;研究员公开了一个解析并提取 Dell PFS BIOS 固件的工具。 Dell PFS BIOS提取器 介绍 解析 Dell PFS BIOS 映像并提取其 SPI/BIOS/UEFI 固件组件。它支持所有Dell PFS 修订版和格式&#xff0c;包括最初在 ThinOS 包中LZMA压缩、ZLIB压缩或拆分成块的格式。输出…

Vue 注册组件介绍

Vue组件的基本概念 Vue组件是一种可复用的Vue实例&#xff0c;用于封装可重用的HTML元素、JavaScript代码和CSS样式。它可以让开发者更好地组织和复用代码&#xff0c;使Web应用程序更加可维护和可扩展 Vue组件通常由三部分组成&#xff1a;模板&#xff08;template&#xf…

NLP实战:快递单信息抽取-基于ERNIE1.0 预训练模型

目录 一、介绍 二、代码 2.1前期准备 2.2加载自定义数据集 2.3数据处理 2.4数据读入 2.5PaddleNLP一键加载预训练模型 2.6设置Fine-Tune优化策略&#xff0c;模型配置 2.7模型训练与评估 ​编辑 2.8模型预测 三、总结 原文&#xff1a; 一、介绍 命名实体识别&…

网易云音乐开发--主页静态页面搭建

如何用VScode来开发小程序 wxml和wxss来高亮小程序 窗口设置 轮播图制作 就是通过swiper来设置轮播图 iconfont字体图标使用 这里要借助阿里的iconfonticonfont-阿里巴巴矢量图标库 找到自己喜欢的图标&#xff0c;添加到购物车 添加到项目 这样就可以统一的管理图标的库 …

Windows环境安装Elasticsearch和Kibana

文章目录 1 Elasticsearch1.1 下载1.2 解压并添加环境变量1.3 访问1.4 cmd命令1.5 中文分词器1.5.1 下载1.5.2 安装1.5.2.1 命令安装1.5.2.2 手动安装1.5.2.3 验证分词 1.6 使用curl批量导入 2 安装 kibana2.1 下载kibana2.2 中文界面2.3 操作索引2.3.1 增加索引2.3.1.1 单条新…

电商--订单支付中存在的问题以及思考

文章目录 前言背景订单支付大致流程订单支付流程中的注意细节防止订单重复创建为何会出现重复创建订单处理措施 掉单导致的重复支付为何会出现这种场景处理措施 已支付流水退款为何会出现这种场景 前言 最近感觉应该把自己在工作中遇到的一些比较有意思的核心流程进行总结以此…

win10远程桌面控制Ubuntu服务器 - 内网穿透实现公网远程

文章目录 前言视频教程1. ubuntu安装XRDP2.局域网测试连接3. Ubuntu安装cpolar内网穿透4.cpolar公网地址测试访问5.固定域名公网地址 转载自远程穿透文章&#xff1a;Windows通过RDP异地远程桌面Ubuntu【内网穿透】 前言 XRDP是一种开源工具&#xff0c;它允许用户通过Windows…

软件测试之测试的分类(重点:黑盒测试、白盒测试、单元测试、集成测试、系统测试)

文章目录 1. 按照测试对象进行划分1&#xff09;界面测试2&#xff09;可靠性测试3&#xff09;容错性测试4&#xff09;文档测试5&#xff09;兼容性测试6&#xff09;易用性测试7&#xff09;软件安装卸载的测试8&#xff09;安全测试9&#xff09;性能测试10&#xff09;内存…

代码随想录算法训练营第五十天| 123.买卖股票的最佳时机III、188.买卖股票的最佳时机IV

文章目录 123.买卖股票的最佳时机III188.买卖股票的最佳时机IV:star: 123.买卖股票的最佳时机III 至多买卖两次 分清楚动态规划所有状态至关重要&#xff0c;这是求dp数组的前提 和之前买卖股票问题解题思路相似&#xff0c;只是多增加了第二天的状态 总结&#xff1a;买卖股票…

Docker代码环境打包

1. 介绍 Docker是一种开源的容器化平台&#xff0c;它可以在操作系统级别运行应用程序。通过将应用程序及其依赖项封装成一个可移植的容器&#xff0c;Docker使得应用程序可以在任何环境中轻松部署、运行和管理。使用Docker&#xff0c;开发人员可以避免在不同环境中出现的配置…

测试从业第 3 年,我看到了终点......

先说明&#xff0c;今天的内容&#xff0c;是写给想成为高级测试开发、自动化测试专家的人看的&#xff0c;因为&#xff0c;它可能颠覆你的认知。 众所周知&#xff0c;如今无论是大厂还是中小厂&#xff0c;自动化测试基本是标配了&#xff0c;毕竟像双11、618 这种活动中庞…

vue-element-admin入门

vue-element-ui的基本使用 vue-element-admin下载vue-element-admin对接后端接口mock接口信息编写后端接口对接测试移除mock替换接口 vue-element-admin下载 这里下载的是基础模板&#xff0c;要下载完整版的可以去官网下载 # clone the project git clone https://github.co…

leetcode刷题日志4.0

目录 前言&#xff1a; 1.三个数的最大乘积 2.错误的集合 3.机器人能否返回原点 4.最长连续递增序列 5.验证回文串 II 6.交替位二进制数 前言&#xff1a; 五一假期结束了&#xff0c;大家玩的开心吗&#xff1f;不过我们还得回到我们的日常生活学习工作当中&#xff0c;…