目录
一、前言
二、作者简介
三、《PyTorch高级机器学习实战》内容简介
四、书目录
一、前言
今天,偶尔逛到csdn社区图书馆,看到有活动 “【图书活动第四期】来一起写书评领实体奖牌+红包+电子勋章吧!”(活动到今天结束,我。。。)
4月30日 24:00 前,在图书列表(详见第五大点)中选择喜欢的图书,并在本帖评论区参与评论盖楼。
机工出版
|
扫了一眼,《PyTorch高级机器学习实战》这本书还挺有兴趣看一下,最近自己在自学深度学习、人工智能方面的东西,有很多相关的算法定义不太理解,实战一下会好点。我是幸运中奖的绝缘体,我能被抽中送书吗?答案是:哈哈哈~~
无所谓,先了解一下书的内容,有时间自己找来看一下
二、作者简介
这本书的作者是王宇龙,清华大学计算机博士,大型互联网公司算法专家,在国际学术会议及期刊发表过多篇论文。专业出身,经验丰富,写的书应该挺不错的。
三、《PyTorch高级机器学习实战》内容简介
随着人工智能和机器学习的蓬勃发展,相关算法和技术已经广泛运用到诸多行业,大量的研究者和各行业人员也投入机器学习的研究与开发中。
掌握高级机器学习算法原理,并能够根据不同情况实现灵活运用,是相关从业者必备的核心技能,也能够帮助自身提高理论水平,实现与众不同的创造成果。
本书主要介绍的是机器学习领域经典的算法内容,以及相关原理所涉及的基础知识。这部分内容一般出现在研究生阶段的进阶课程中,是深入研究机器学习的必备知识。同时本书的一大特色是不止停留在单纯的理论算法介绍层面,更强调动手实践。为了方便读者学习,本书采用了PyTorch这一当前最流行的机器学习框架,实现所有的算法过程。PyTorch之前更是应用在深度学习领域,可以实现深度神经网络的训练运算等过程。本书则利用了其完善的科学运算矩阵库,灵活的自动微分求导引擎,以及方便的GPU加速运算等功能,向读者展示PyTorch框架在机器学习领域也有着广泛的应用。
全书分为8章,前两章介绍机器学习基本概念和 PyTorch基本操作,对于了解相关背景的读者可以略读。从第3章开始,将深入学习常见的监督学习、无监督学习、概率图模型、核方法、深度神经网络,以及强化学习。本书并没有过多介绍某一具体领域的应用算法,但在各章最后配备了实战环节,利用所学的算法知识解决具体问题。实战内容涵盖了经典数据挖掘比赛,推荐广告中的点击率预估算法,无监督学习在异常检测中的应用,复杂概率图模型的变分推断,利用高斯过程进行超参数优化,对抗生成网络进行不同风格转换和在游戏环境中训练多种深度强化学习智能体。希望读者关注核心的机器学习通用原理及算法,以便能够处理更多、更新、更复杂的问题。
在写作本书的过程中,笔者也收获良多,重新温习求学时读过的经典著作和论文,再次感受到了算法原理的精妙与深刻。同时笔者也意识到自己力有不逮,机器学习领域还有更多精彩内容无法全部涉及,同时写作中难免会有纰漏,欢迎读者指正,共同交流,相互促进。
四、书目录
《PyTorch高级机器学习实战》
目录
第1章 机器学习概述/
1.1 机器学习简介/
1.1.1 机器学习的含义/
1.1.2 机器学习概述/
1.1.3 不同类型的机器学习算法/
1.2 数据处理/
1.2.1 数据特征分类及表示/
1.2.2 数据预处理/
1.2.3 数据缺失处理/
1.2.4 特征衍生和交叉/
1.2.5 特征筛选/
1.3 衡量标准/
1.3.1 模型评估指标/
1.3.2 数据集划分/
1.3.3 超参数优化/
1.4 优化目标/
1.4.1 损失函数/
1.4.2 梯度下降优化/
1.4.3 受约束优化:Lagrange函数/
1.5 实战:简单模型实现Titanic乘客生存概率预测/
1.5.1 问题描述与数据特征/
1.5.2 简单属性分类模型实现预测/
第2章 PyTorch基本操作介绍/
2.1 PyTorch简介/
2.2 核心概念:Tensor/
2.2.1 Tensor基本操作/
2.2.2 基本数学运算/
2.2.3 索引分片操作/
2.2.4 类成员方法/
2.3 自动求导(Autograd)/
2.3.1 可微分张量/
2.3.2 Function:实现自动微分的基础/
2.4 神经网络核心模块:torch.nn/
2.4.1 nn.Module概述/
2.4.2 函数式操作nn.functional/
2.5 优化器(optimizer)/
2.5.1 optimizer概述/
2.5.2 学习率调节/
2.5.3 经典优化器介绍/
2.6 数据加载/
2.6.1 Dataset与DataLoader介绍/
2.6.2 预处理变换torchvision.transforms/
2.7 高级操作/
2.7.1 GPU运算/
2.7.2 利用C++实现自定义算子/
2.8 实战:Wide & Deep模型实现Criteo点击率预估/
2.8.1 问题定义与数据特征/
2.8.2 Wide & Deep模型介绍/
2.8.3 完整实验流程/
第3章 监督学习/
3.1 线性回归(Linear Regression)/
3.1.1 小二乘法(Least Square Method)/
3.1.2 岭回归(Ridge Regression)/
3.1.3 贝叶斯线性回归(Bayesian Linear Regression)/
3.2 逻辑回归(Logistic Regression)/
3.2.1 二分类逻辑回归/
3.2.2 多分类Softmax回归/
3.2.3 贝叶斯逻辑回归(Bayesian Logistic Regression)/
3.3 支持向量机(Support Vector Machine,SVM)/
3.3.1 线性可分下SVM的定义/
3.3.2 利用随机梯度下降求解/
3.3.3 凸优化简介/
3.3.4 SVM对偶问题表示/
3.3.5 梯度下降法求解对偶问题/
3.3.6 从Hard SVM扩展到Soft SVM/
3.3.7 支持向量回归(Support Vector Regression,SVR)/
3.3.8 带有松弛变量的SVR及对偶优化方法/
3.4 决策树模型(Decision Tree)/
3.4.1 构建单个树模型/
3.4.2 集成学习(Ensemble Learning)/
3.5 K近邻算法(K Nearest Neighbors,KNN)/
3.6 实战:复杂模型实现Titanic旅客生存概率预测/
3.6.1 Titanic数据集特征处理/
3.6.2 多种模型预测性能对比/
第4章 无监督学习/
4.1 聚类方法(Clustering Method)/
4.1.1 KMeans聚类/
4.1.2 谱聚类(Spectral Clustering)/
4.1.3 聚合聚类(Agglomerative Clustering)/
4.2 密度估计(Density Estimation)/
4.2.1 高斯混合模型(Gaussian Mixture Model)/
4.2.2 期望大化算法(Expectation Maximization,EM)/
4.3 降维与嵌入(Dimension Reduction & Embedding)/
4.3.1 主成分分析(Principal Component Analysis,PCA)/
4.3.2 局部线性嵌入(Locally Linear Embedding,LLE)/
4.3.3 随机邻居嵌入算法(tSNE)/
4.4 实战:无监督方法实现异常检测(Anomaly Detection)/
4.4.1 异常检测问题与应用/
4.4.2 实现基于PCA的异常检测方法/
4.4.3 实现基于Mahalanobis距离的异常检测方法/
4.4.4 实现基于聚类的局部异常因子检测方法/
第5章 PyTorch高级机器学习实战概率图模型/
5.1 有向图:贝叶斯网络(Bayesian Network)/
5.1.1 有向图的概率分解/
5.1.2 条件独立性(Conditional Independence)/
5.2 无向图:马尔可夫随机场(Markov Random Field,MRF)/
5.2.1 无向图的概率分解/
5.2.2 具体应用:图像去噪(Image Denoising)/
5.3 隐马尔可夫模型(Hidden Markov Model,HMM)/
5.3.1 隐马尔可夫模型介绍/
5.3.2 前向后向算法(ForwardBackward Algorithm)/
5.3.3 放缩提升运算稳定性/
5.3.4 代码实现/
5.4 变分推断(Variational Inference,VI)/
5.4.1 后验分布优化与ELBO/
5.4.2 黑盒变分推断算法(BlackBox Variational Inference,BBVI)/
5.5 蒙特卡罗采样(Monte Carlo Sampling)/
5.5.1 拒绝采样(Rejection Sampling)/
5.5.2 马尔可夫链蒙特卡罗(Markov Chain Monte Carlo)/
5.5.3 吉布斯采样(Gibbs Sampling)/
5.5.4 哈密顿蒙特卡罗采样(Hamiltonian Monte Carlo,HMC)/
5.6 实战:变分高斯混合模型(Variational Gaussian Mixture Model)/
5.6.1 扩展GMM:贝叶斯高斯混合模型(Bayesian Gaussian Mixture Model)/
5.6.2 变分推断近似/
5.6.3 代码实现/
第6章 核方法/
6.1 核函数及核技巧/
6.2核化KMeans算法(Kernel KMeans)/
6.2.1 KMeans算法回顾/
6.2.2 具体实现/
6.3 核化支持向量机(Kernel SVM)/
6.3.1 SVM对偶问题及核函数表示/
6.3.2 核化支持向量回归(Kernel SVR)/
6.4 核化主成分分析 (Kernel PCA,KPCA)/
6.4.1 回顾PCA及核化表示/
6.4.2 核中心化技巧及实现/
6.5 高斯过程(Gaussian Process,GP)/
6.5.1 高斯过程定义及基本性质/
6.5.2 核函数参数选取优化/
6.6 实战:利用高斯过程进行超参数优化/
6.6.1 超参数优化(Hyperparameter Optimization)/
6.6.2 具体实现/
第7章 深度神经网络/
7.1 神经网络(Neural Network)/
7.1.1 基本算子操作/
7.1.2 常见网络结构/
7.1.3 网络训练/
7.2 变分自编码器(Variational AutoEncoder,VAE)/
7.2.1 多种自编码器介绍/
7.2.2 变分自编码器/
7.3 深度生成模型(Deep Generative Model,DGM)/
7.3.1 受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)/
7.3.2 生成式对抗网络(Generative Adversarial Network,GAN)/
7.4 实战:利用CycleGAN进行图片风格转换/
7.4.1 CycleGAN模型介绍/
7.4.2 模型实现/
第8章 强化学习/
8.1 经典强化学习介绍/
8.1.1 基本概念介绍/
8.1.2 强化学习环境OpenAI Gym/
8.2 马尔可夫决策过程(Markov Decision Process,MDP)/
8.2.1 MDP定义及贝尔曼优方程/
8.2.2 策略迭代(Policy Iteration)和价值迭代(Value Iteration)/
8.2.3 蒙特卡罗采样学习(Monte Carlo Learning)/
8.2.4 时序差分学习(Temporal Difference Learning,TDLearning)/
8.3 基于Q价值函数的深度强化学习/
8.3.1 深度Q网络(Deep QNetwork,DQN)/
8.3.2 其他DQN改进模型/
8.4 基于策略优化的深度强化学习/
8.4.1 策略梯度算法(Policy Gradient)/
8.4.2 Advantage ActorCritic(A2C)算法/
8.4.3 近邻策略优化法(Proximal Policy Optimization,PPO)/
8.4.4 深度确定性策略梯度算法(Deep Deterministic Policy Gradient,DDPG)/
8.4.5 Soft Actor Critic(SAC)算法/
8.5 实战:在Atari游戏环境中进行深度强化学习评测/
8.5.1 Atari游戏环境及预处理方式/
8.5.2 多种深度强化学习性能比较/