【数据库】MVCC原理详解

news2024/11/26 0:44:28

文章目录

  • 前言
  • 1. 相关数据库知识点回顾
    • 1.1 什么是数据库事务,为什么要有事务
    • 1.2 事务包括哪几个特性?
    • 1.3 事务并发存在的问题
      • 1.3.1 脏读
      • 1.3.2 不可重复读
      • 1.3.3 幻读
    • 1.4 四大隔离级别
      • 1.4.1 读未提交
      • 1.4.2 读已提交
      • 1.4 3 可重复读
      • 1.4.4 串行化
      • 1.4.5 四大隔离级别,都会存在哪些并发问题呢
    • 1.5 数据库是如何保证事务的隔离性的呢?
  • 2. 什么是 MVCC?
  • 3. MVCC实现的关键知识点
    • 3.1 事务版本号
    • 3.2 隐式字段
    • 3.3 undo log
    • 3.4 版本链
    • 3.5 快照读和当前读
    • 3.6 Read View
  • 4. MVCC实现原理分析
    • 4.1 查询一条记录,基于MVCC,是怎样的流程
    • 4.2 读已提交(RC)隔离级别,存在不可重复读问题的分析历程
    • 4.3 可重复读(RR)隔离级别,解决不可重复读问题的分析
      • 4.3.1 不同隔离级别下,Read View的工作方式不同
      • 4.3.2 实例分析
    • 4.4 网络江湖传说,MVCC是否解决了幻读问题呢?
      • 4.4.1 RR级别下,一个快照读的例子,不存在幻读问题
      • 4.4.2 RR级别下,一个当前读的例子
      • 4.4.3 这种特殊场景,似乎有幻读问题
  • 参考资料

前言

MVCC实现原理是一道非常高频的面试题,最近技术讨论群的小伙伴一直在讨论,趁着五一假期有空,我们一起来聊聊。

1. 相关数据库知识点回顾

1.1 什么是数据库事务,为什么要有事务

事务,由一个有限的数据库操作序列构成,这些操作要么全部执行,要么全部不执行,是一个不可分割的工作单位。

假如A转账给B 100 元,先从A的账户里扣除 100 元,再在 B 的账户上加上 100
元。如果扣完A的100元后,还没来得及给B加上,银行系统异常了,最后导致A的余额减少了,B的余额却没有增加。所以就需要事务,将A的钱回滚回去,就是这么简单。

为什么要有事务呢? 就是为了保证数据的最终一致性。

1.2 事务包括哪几个特性?

事务四个典型特性,即ACID,原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)。

  • 原子性:事务作为一个整体被执行,包含在其中的对数据库的操作要么全部都执行,要么都不执行。
    一致性:指在事务开始之前和事务结束以后,数据不会被破坏,假如A账户给B账户转10块钱,不管成功与否,A和B的总金额是不变的。
  • 隔离性:多个事务并发访问时,事务之间是相互隔离的,一个事务不应该被其他事务干扰,多个并发事务之间要相互隔离。。
  • 持久性:表示事务完成提交后,该事务对数据库所作的操作更改,将持久地保存在数据库之中。

1.3 事务并发存在的问题

事务并发会引起脏读、不可重复读、幻读问题。

1.3.1 脏读

如果一个事务读取到了另一个未提交事务修改过的数据,我们就称发生了脏读现象。

假设现在有两个事务A、B:

  • 假设现在A的余额是100,事务A正在准备查询Jay的余额
  • 事务B先扣减Jay的余额,扣了10,但是还没提交
  • 最后A读到的余额是90,即扣减后的余额

因为事务A读取到事务B未提交的数据,这就是脏读。

1.3.2 不可重复读

同一个事务内,前后多次读取,读取到的数据内容不一致

假设现在有两个事务A和B:

  • 事务A先查询Jay的余额,查到结果是100
  • 这时候事务B 对Jay的账户余额进行扣减,扣去10后,提交事务
  • 事务A再去查询Jay的账户余额发现变成了90

事务A被事务B干扰到了!在事务A范围内,两个相同的查询,读取同一条记录,却返回了不同的数据,这就是不可重复读。

1.3.3 幻读

如果一个事务先根据某些搜索条件查询出一些记录,在该事务未提交时,另一个事务写入了一些符合那些搜索条件的记录(如insert、delete、update),就意味着发生了幻读。

假设现在有两个事务A、B:

  • 事务A先查询id大于2的账户记录,得到记录id=2和id=3的两条记录
  • 这时候,事务B开启,插入一条id=4的记录,并且提交了
  • 事务A再去执行相同的查询,却得到了id=2,3,4的3条记录了。

事务A查询一个范围的结果集,另一个并发事务B往这个范围中插入新的数据,并提交事务,然后事务A再次查询相同的范围,两次读取到的结果集却不一样了,这就是幻读。

1.4 四大隔离级别

为了解决并发事务存在的脏读、不可重复读、幻读等问题,数据库大叔设计了四种隔离级别。分别是读未提交,读已提交,可重复读,串行化(Serializable)。

1.4.1 读未提交

读未提交隔离级别,只限制了两个数据不能同时修改,但是修改数据的时候,即使事务未提交,都是可以被别的事务读取到的,这级别的事务隔离有脏读、重复读、幻读的问题;

1.4.2 读已提交

读已提交隔离级别,当前事务只能读取到其他事务提交的数据,所以这种事务的隔离级别解决了脏读问题,但还是会存在重复读、幻读问题;

1.4 3 可重复读

可重复读隔离级别,限制了读取数据的时候,不可以进行修改,所以解决了重复读的问题,但是读取范围数据的时候,是可以插入数据,所以还会存在幻读问题;

1.4.4 串行化

事务最高的隔离级别,在该级别下,所有事务都是进行串行化顺序执行的。可以避免脏读、不可重复读与幻读所有并发问题。但是这种事务隔离级别下,事务执行很耗性能。

1.4.5 四大隔离级别,都会存在哪些并发问题呢

隔离级别脏读不可重复读幻读
读未提交
读已提交×
可重复读××
串行化×××

1.5 数据库是如何保证事务的隔离性的呢?

数据库是通过加锁,来实现事务的隔离性的。这就好像,如果你想一个人静静,不被别人打扰,你就可以在房门上加上一把锁。

加锁确实好使,可以保证隔离性。比如串行化隔离级别就是加锁实现的。但是频繁的加锁,导致读数据时,没办法修改,修改数据时,没办法读取,大大降低了数据库性能。

那么,如何解决加锁后的性能问题的?

答案就是,MVCC多版本并发控制!它实现读取数据不用加锁,可以让读取数据同时修改。修改数据时同时可读取。

2. 什么是 MVCC?

MVCC,即Multi-Version Concurrency Control (多版本并发控制)。它是一种并发控制的方法,一般在数据库管理系统中,实现对数据库的并发访问,在编程语言中实现事务内存。

通俗的讲,数据库中同时存在多个版本的数据,并不是整个数据库的多个版本,而是某一条记录的多个版本同时存在,在某个事务对其进行操作的时候,需要查看这一条记录的隐藏列事务版本id,比对事务id并根据事物隔离级别去判断读取哪个版本的数据。

数据库隔离级别读已提交、可重复读 都是基于MVCC实现的,相对于加锁简单粗暴的方式,它用更好的方式去处理读写冲突,能有效提高数据库并发性能。

3. MVCC实现的关键知识点

3.1 事务版本号

事务每次开启前,都会从数据库获得一个自增长的事务ID,可以从事务ID判断事务的执行先后顺序。这就是事务版本号。

3.2 隐式字段

对于InnoDB存储引擎,每一行记录都有两个隐藏列trx_id、roll_pointer,如果表中没有主键和非NULL唯一键时,则还会有第三个隐藏的主键列row_id。

列名是否必须描述
row_id单调递增的行ID,不是必需的,占用6个字节。
trx_id记录操作该数据事务的事务ID
roll_pointer这个隐藏列就相当于一个指针,指向回滚段的undo日志

3.3 undo log

undo log,回滚日志,用于记录数据被修改前的信息。在表记录修改之前,会先把数据拷贝到undo log里,如果事务回滚,即可以通过undo log来还原数据。

图片
可以这样认为,当delete一条记录时,undo log 中会记录一条对应的insert记录,当update一条记录时,它记录一条对应相反的update记录。

undo log有什么用途呢?

  1. 事务回滚时,保证原子性和一致性。
  2. 用于MVCC快照读。

3.4 版本链

多个事务并行操作某一行数据时,不同事务对该行数据的修改会产生多个版本,然后通过回滚指针(roll_pointer),连成一个链表,这个链表就称为版本链。如下:

版本链

其实,通过版本链,我们就可以看出事务版本号、表格隐藏的列和undo log它们之间的关系。我们再来小分析一下。

  1. 假设现在有一张core_user表,表里面有一条数据,id为1,名字为孙权:
    在这里插入图片描述

  2. 现在开启一个事务A:对core_user表执行update core_user set name =“曹操” where id=1,会进行如下流程操作

  • 首先获得一个事务ID=100
  • 把core_user表修改前的数据,拷贝到undo log
  • 修改core_user表中,id=1的数据,名字改为曹操
  • 把修改后的数据事务Id=101改成当前事务版本号,并把roll_pointer指向undo log数据地址。
    在这里插入图片描述

3.5 快照读和当前读

快照读: 读取的是记录数据的可见版本(有旧的版本)。不加锁,普通的select语句都是快照读,如:

select * from core_user where id > 2;

当前读:读取的是记录数据的最新版本,显式加锁的都是当前读

select * from core_user where id > 2 for update;
select * from account where id>2 lock in share mode;

3.6 Read View

  • Read View是什么呢? 它就是事务执行SQL语句时,产生的读视图。实际上在innodb中,每个SQL语句执行前都会得到一个Read View。
  • Read View有什么用呢? 它主要是用来做可见性判断的,即判断当前事务可见哪个版本的数据~

Read View是如何保证可见性判断的呢?我们先看看Read view 的几个重要属性

  • m_ids:当前系统中那些活跃(未提交)的读写事务ID, 它数据结构为一个List。
  • min_limit_id:表示在生成Read View时,当前系统中活跃的读写事务中最小的事务id,即m_ids中的最小值。
  • max_limit_id:表示生成Read View时,系统中应该分配给下一个事务的id值。
  • creator_trx_id: 创建当前Read View的事务ID

Read view 匹配条件规则如下:

  1. 如果数据事务ID trx_id < min_limit_id,表明生成该版本的事务在生成Read View前,已经提交(因为事务ID是递增的),所以该版本可以被当前事务访问。
  2. 如果trx_id>= max_limit_id,表明生成该版本的事务在生成ReadView后才生成,所以该版本不可以被当前事务访问。
  3. 如果 min_limit_id =<trx_id< max_limit_id,需腰分3种情况讨论

(1).如果m_ids包含trx_id,则代表Read
View生成时刻,这个事务还未提交,但是如果数据的trx_id等于creator_trx_id的话,表明数据是自己生成的,因此是可见的。
(2)如果m_ids包含trx_id,并且trx_id不等于creator_trx_id,则Read
View生成时,事务未提交,并且不是自己生产的,所以当前事务也是看不见的;
(3).如果m_ids不包含trx_id,则说明你这个事务在Read View生成之前就已经提交了,修改的结果,当前事务是能看见的。

4. MVCC实现原理分析

4.1 查询一条记录,基于MVCC,是怎样的流程

  1. 获取事务自己的版本号,即事务ID
  2. 获取Read View
  3. 查询得到的数据,然后Read View中的事务版本号进行比较。
  4. 如果不符合Read View的可见性规则, 即就需要Undo log中历史快照;
  5. 最后返回符合规则的数据

InnoDB 实现MVCC,是通过Read View+ Undo Log 实现的,Undo Log 保存了历史快照,Read View可见性规则帮助判断当前版本的数据是否可见。

4.2 读已提交(RC)隔离级别,存在不可重复读问题的分析历程

  1. 创建core_user表,插入一条初始化数据,如下:
    在这里插入图片描述

  2. 隔离级别设置为读已提交(RC),事务A和事务B同时对core_user表进行查询和修改操作。

事务A: select * fom core_user where id=1
事务B: update core_user set name =”曹操”

执行流程如下:

在这里插入图片描述

最后事务A查询到的结果是,name=曹操的记录,我们基于MVCC,来分析一下执行流程:

(1). A开启事务,首先得到一个事务ID为100

(2).B开启事务,得到事务ID为101

(3).事务A生成一个Read View,read view对应的值如下

变量
m_ids100,101
max_limit_id102
min_limit_id100
creator_trx_id100

然后回到版本链:开始从版本链中挑选可见的记录:

在这里插入图片描述

由图可以看出,最新版本的列name的内容是孙权,该版本的trx_id值为100。开始执行read view可见性规则校验:

min_limit_id(100)=<trx_id(100<102;
creator_trx_id = trx_id =100;

由此可得,trx_id=100的这个记录,当前事务是可见的。所以查到是name为孙权的记录。

(4). 事务B进行修改操作,把名字改为曹操。把原数据拷贝到undo log,然后对数据进行修改,标记事务ID和上一个数据版本在undo log的地址。

在这里插入图片描述

(5) 提交事务

(6) 事务A再次执行查询操作,新生成一个Read View,Read View对应的值如下

变量
m_ids100
max_limit_id102
min_limit_id100
creator_trx_id100

然后再次回到版本链:从版本链中挑选可见的记录:

在这里插入图片描述

从图可得,最新版本的列name的内容是曹操,该版本的trx_id值为101。开始执行Read View可见性规则校验:

min_limit_id(100)=<trx_id(101<max_limit_id(102);
但是,trx_id=101,不属于m_ids集合

因此,trx_id=101这个记录,对于当前事务是可见的。所以SQL查询到的是name为曹操的记录。

综上所述,在读已提交(RC)隔离级别下,同一个事务里,两个相同的查询,读取同一条记录(id=1),却返回了不同的数据(第一次查出来是孙权,第二次查出来是曹操那条记录),因此RC隔离级别,存在不可重复读并发问题。

4.3 可重复读(RR)隔离级别,解决不可重复读问题的分析

在RR隔离级别下,是如何解决不可重复读问题的呢?我们一起再来看下,

还是4.2小节那个流程,还是这个事务A和事务B,如下:

在这里插入图片描述

4.3.1 不同隔离级别下,Read View的工作方式不同

实际上,各种事务隔离级别下的Read view工作方式,是不一样的,RR可以解决不可重复读问题,就是跟Read view工作方式有关。

  • 在读已提交(RC)隔离级别下,同一个事务里面,每一次查询都会产生一个新的Read View副本,这样就可能造成同一个事务里前后读取数据可能不一致的问题(不可重复读并发问题)。
    begin ||
    :–|:–
    select * from core_user where id =1 |生成一个Read View
    /| /
    / |/
    select * from core_user where id =1 |生成一个Read View

  • 在可重复读(RR)隔离级别下,一个事务里只会获取一次read view,都是副本共用的,从而保证每次查询的数据都是一样的。

begin
select * from core_user where id =1生成一个Read View
/
/
select * from core_user where id =1共用一个Read View副本

4.3.2 实例分析

我们穿越下,回到刚4.2的例子,然后执行第2个查询的时候:

事务A再次执行查询操作,复用老的Read View副本,Read View对应的值如下

变量
m_ids100,101
max_limit_id102
min_limit_id100
creator_trx_id100

然后再次回到版本链:从版本链中挑选可见的记录:

在这里插入图片描述

从图可得,最新版本的列name的内容是曹操,该版本的trx_id值为101。开始执行read view可见性规则校验:

min_limit_id(100)=<trx_id(101<max_limit_id(102);
因为m_ids{100,101}包含trx_id(101),
并且creator_trx_id (100) 不等于trx_id(101

所以,trx_id=101这个记录,对于当前事务是不可见的。这时候呢,版本链roll_pointer跳到下一个版本,trx_id=100这个记录,再次校验是否可见:

min_limit_id(100)=<trx_id(100< max_limit_id(102);
因为m_ids{100,101}包含trx_id(100),
并且creator_trx_id (100) 等于trx_id(100

所以,trx_id=100这个记录,对于当前事务是可见的,所以两次查询结果,都是name=孙权的那个记录。即在可重复读(RR)隔离级别下,复用老的Read View副本,解决了不可重复读的问题。

4.4 网络江湖传说,MVCC是否解决了幻读问题呢?

网络江湖有个传说,说MVCC的RR隔离级别,解决了幻读问题,我们来一起分析一下。

4.4.1 RR级别下,一个快照读的例子,不存在幻读问题

在这里插入图片描述
在这里插入图片描述

由图可得,步骤2和步骤6查询结果集没有变化,看起来RR级别是已经解决幻读问题啦~

4.4.2 RR级别下,一个当前读的例子

假设现在有个account表,表中有4条数据,RR级别。

开启事务A,执行当前读,查询id>2的所有记录。
再开启事务B,插入id=5的一条数据。
流程如下:

在这里插入图片描述

显然,事务B执行插入操作时,阻塞了~因为事务A在执行select … lock in share mode(当前读)的时候,不仅在id = 3,4 这2条记录上加了锁,而且在id > 2这个范围上也加了间隙锁。

因此,我们可以发现,RR隔离级别下,加锁的select, update, delete等语句,会使用间隙锁+ 临键锁,锁住索引记录之间的范围,避免范围间插入记录,以避免产生幻影行记录,那就是说RR隔离级别解决了幻读问题?

4.4.3 这种特殊场景,似乎有幻读问题

在这里插入图片描述
在这里插入图片描述

其实,上图事务A中,多加了update account set balance=200 where id=5;这步操作,同一个事务,相同的sql,查出的结果集不同了,这个结果,就符合了幻读的定义~

这个问题,亲爱的朋友,你觉得它算幻读问题吗,所以RR隔离级别,还是存在幻读问题吧?欢迎大家评论区留言哈。

参考资料

[1]数据库基础(四)Innodb MVCC实现原理: https://zhuanlan.zhihu.com/p/52977862

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/471834.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

chatgpt模拟机器人软件开发

ChatGPT的参数取决于具体的模型和实现方式&#xff0c;但以下是一些常见的ChatGPT参数&#xff1a; 模型深度&#xff1a;指模型中神经网络的层数。通常情况下&#xff0c;层数越多&#xff0c;模型的表达能力也就越强。 隐藏单元大小&#xff1a;指在模型中每个隐藏层…

局域网 - CSMA/CD(载波侦听多路访问 / 冲突检测)

文章目录 1 概述1.1 局域网的拓扑结构 2 CSMA/CD2.1 三种监听算法2.2 冲突检测原理2.3 二进制指数后退算法 3 扩展3.1 网工软考真题 1 概述 1.1 局域网的拓扑结构 2 CSMA/CD CSMA/CD&#xff1a;Carrier Sense Multiple Access/ Collision Detection&#xff0c;载波侦听多路…

从功能测试转型测试开发,薪资涨了20K,1000字讲述转型必经之路...

身处职场之中&#xff0c;犹如逆水行舟不进则退&#xff0c;想要不被后浪拍死在沙滩上&#xff0c;就要不断学习新知识&#xff0c;接受新事物。 要得到更好的发展&#xff0c;就要紧跟发展趋势&#xff0c;不断转型才能保持竞争力&#xff0c;在职场中占有一席之地。 转型不…

如何理解自动化测试数据驱动与关键字驱动的区别?

一、关键字驱动KDT(Keyword-driven testing) 1、自动化测试框架发展的第三个阶段是关键字驱动测试框架阶段&#xff0c;它是当前比较流行的一种框架之一&#xff0c;并且现在的自动化测试工具已经将关键字驱动框架融入到工具中。在录制过程中自动化测试工具会将对象及操作属性保…

如何提高倾斜摄影超大场景的三维模型轻量化处理速度和效率?

如何提高倾斜摄影超大场景的三维模型轻量化处理速度和效率&#xff1f; 倾斜摄影超大场景的三维模型轻量化处理是将高精度的三维模型进行降采样、简化等处理&#xff0c;以达到减少数据大小和提高渲染性能的目的。为了提高轻量化处理速度&#xff0c;可以从以下方面入手&#x…

【Java 】Java 类加载和类加载器

文章目录 前言一、加载二、链接验证准备解析 三、初始化发生的时机不会触发类的初始化 四、类加载器双亲委派模式 前言 Java 的类加载阶段分为&#xff1a;加载、链接、初始化&#xff0c;而链接的过程中包括&#xff1a;验证、准备、解析。 一、加载 将类的字节码载入方法区…

vue3新拟态组件库开发流程——table组件源码

基础表格 首先开发table组件之前&#xff0c;先想好要用什么样式的api&#xff0c;因为笔者在生产工作中用的都是element&#xff0c;所以前面几个组件风格和element类似&#xff0c;但是这次不打算用element的风格了&#xff0c;打算换一种&#xff0c;直接展示&#xff1a; …

LinkedHashMap顺序迭代原理与LRU算法实现

一、LinkedHashMap与HashMap的结构区别 HashMap LinkedHashMap 结构区别&#xff1a;LinkedHashMap的元素Entry中多两个用于维护双向链表的指针before、after&#xff0c;并且在LinkedHashMap中有两个head、tail指针用于记录双向链表的头结点和尾结点。 二、LinkedHashMa…

2.3 定点乘法运算

学习目标&#xff1a; 如果我要学习定点乘法运算&#xff0c;我会按照以下步骤进行学习&#xff1a; 确定学习目标&#xff1a;明确学习定点乘法运算的目的和重点&#xff0c;以便有针对性地进行学习。 掌握基础知识&#xff1a;首先需要了解定点数和定点乘法的基础知识&…

【halcon】半透明和棋盘格(未完成)

背景 想实现一个这样的效果&#xff1a; 但是发现设置HSmartWindowControlWPF 的Background 根本就没有反应。 探索过程 于是就换个思路&#xff0c;把棋盘格画到Border里面。 <Border Grid.Row"1" Grid.ColumnSpan"2" Panel.ZIndex"0" >…

MySQL:数据库的基本操作

MySQL是一个客户端服务器结构的程序, 一.关系型数据库 关系型数据库是一个结构化的数据库&#xff0c;创建在关系模型&#xff08;二维表格模型&#xff09;基础上&#xff0c;一般面向于记录。 主流的关系型数据库包括 Oracle、MySQL、SQL Server、Microsoft Access、DB2 等. …

mitmproxy抓包

0.mitmproxy功能简介 实时拦截、修改 HTTP/HTTPS 请求和响应可保存完整的 http 会话&#xff0c;方便后续分析和重放支持反向代理模式将流量转发到指定服务器支持 macOS 和 Linux上的透明代理模式支持用 Python 脚本对 HTTP 通信进行修改 1. 安装mitmproxy pip3 install mit…

wow.js scrollReveal.js 动画库 使用详解以及优劣

wow.js 1.简介 有的页面在向下滚动的时候&#xff0c;有些元素会产生细小的动画效果。比如需要做到滚动条滑到某个位置时&#xff0c;才能显示动画。wow.js 依赖 animate.css&#xff0c;所以它支持 animate.css 多达 60 多种的动画效果&#xff0c;能满足您的各种需求。 IE6、…

Python+Qt掌纹识别

程序示例精选 PythonQt掌纹识别 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对<<PythonQt掌纹识别>>编写代码&#xff0c;代码整洁&#xff0c;规则&#xff0c;易读。 学习与应…

安卓GB28181-2022 RTP over TCP

使用TCP传输RTP包&#xff0c;GB28181-2016和GB28181-2022 都是按IETF RFC4571来的。使用TCP发送RTP包&#xff0c;前面加个16位无符号长度字段就好(网络字节序)。具体定义格式如下&#xff1a; 需要注意的是LENGTH值可以是0&#xff0c;0的话表示空包; 另外UDP传输RTP包&#…

【华为云主机迁移服务SMS,使用指南 (linux版本)】

文章目录 华为云主机迁移服务SMS,使用指南 (linux版本)1.迁移前准备工作1.1 必要条件1.2 准备 (注意切换浏览器) 2.在源端(A服务器)安装Agent (linux版), 连接到B的华为云SMS3.设置目的端(B服务器)--在B浏览器内操作4.开始服务器复制5.启动目的端 (B)6.其他非必要操作 华为云主…

KDZD地埋线短路漏电试扎器

一、产品背景 多年以来&#xff0c;电力电缆的维护迁移过程中的识别与刺孔&#xff0c;均按照行业标准DL409-91《电业安全工作规程&#xff08;电力线路部分&#xff09;》第234条要求&#xff0c;采用人工刺孔&#xff0c;一旦电缆识别出错&#xff0c;误刺孔带电电缆将对人身…

就现在!体验高科技的虚拟孪生

01 行业创新已成大势所趋 世界进入工业复兴大约已有十余载&#xff0c;众多行业开始向数字化转型&#xff0c;尖端技术取代了老旧的数字技术。对于制造商而言&#xff0c;在将运营控制在预算范围内的同时&#xff0c;保持满足这些需求所需的产量&#xff0c;是一项巨大的挑战。…

JS-11G/11端子排静态时间继电器 JOSEF约瑟 导轨安装

JS-11G系列端子排静态时间继电器品牌&#xff1a;JOSEF约瑟名称&#xff1a;端子排静态时间继电器型号&#xff1a;JS-11G工作电压&#xff1a;48,110,220V返回时间&#xff1a;≤20mS延时范围&#xff1a;0.02S~999M 系列型号&#xff1a; JS-11G1端子排静态时间继电器&…

【英语】2023 全国大学生英语竞赛NECCS相关准备

文章目录 1、比赛基本信息2、大赛题型和分值3、如何准备4、2023年全国大学生英语竞赛样题(C级)&#xff0c;满分150Part1. 听力&#xff08;30分钟&#xff0c;30分&#xff0c;1题1分&#xff09;Part2/3. 词语|语法&#xff0c;完型填空&#xff08;20分钟&#xff0c;25分&a…