文章目录
- 一、DS18B20器件图
- 二、DS18B20特点
- 三、DS18B20内部结构
- 内部构成
- 四、工作时序
- 1.初始化时序
- 2.ReadOneChar
- 2.WriteOneChar
一、DS18B20器件图
DS18B20的管脚排列:
- GND为电源地;
- DQ为数字信号输入/输出端;
- VDD为外接供电电源输入端
(在寄生电源接线方式时接地)
二、DS18B20特点
DS18B20 单线数字温度传感器,即“一线器件”,其具有独特的优点:
( 1 )采用单总线的接口方式 与微处理器连接时 仅需要一条线即可实现微处理器与 DS18B20 的双向通讯。 单总线具有经济性好,抗干扰能力强,适合于恶劣环境的现场温度测量,使用方便等优点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。
( 2 )测量温度范围宽,测量精度高. DS18B20 的测量范围为 -55 ℃ ~+ 125 ℃ (-67 ~+257℉); 在 -10 ~ + 85°C 范围内,精度为 ± 0.5°C 。
( 3 )在使用中不需要任何外围器件。
( 4 )持多点组网功能 多个 DS18B20 可以并联在唯一的单线上,实现多点测温。
( 5 )供电方式灵活 DS18B20 可以通过内部寄生电路从数据线上获取电源。因此,当数据线上的时序满足一定的要求时,可以不接外部电源,从而 使系统结构更趋简单,可靠性更高。
( 6 )测量参数可配置 DS18B20 的测量分辨率可通过程序设定 9~12 位。
( 7 ) 负压特性 电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。
( 8 )掉电保护功能 :DS18B20 内部含有 EEPROM ,在系统掉电以后,它仍可保存分辨率及报警温度的设定值。
三、DS18B20内部结构
主要由4部分组成:64 位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。ROM中的64位序列号是出厂前被光刻好的,它可以看作 是该DS18B20的地址序列码,每个DS18B20的64位序列号均不相同。64位ROM的循环冗余校验码(CRC=X^ 8 + X ^ 5+X^4+1)。 ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。
内部构成
DS18B20 内部结构主要由四部分组成: 64 位光刻 ROM 、温度传感器、非挥发的温度报警触发器 TH 和 TL 、配置寄存器。
光刻 ROM 中的 64 位序列号是出厂前被光刻好的,它可以看作是该 DS18B20 的地址序列码。 64 位光刻 ROM 的排列是:开始 8 位(地址: 28H )是产品类型标号,接着的 48 位是该 DS18B20 自身的序列号,并且每个 DS18B20 的序列号都不相同,因此它可以看作是该 DS18B20 的地址序列码;最后 8 位则是前面 56 位的循环冗余校验码( CRC=X8+X5+X4+1 )。由于每一个 DS18B20 的 ROM 数据都各不相同,因此微控制器就可以通过单总线对多个 DS18B20 进行寻址,从而实现一根总线上挂接多个 DS18B20 的目的。
DS18B20中的温度传感器完成对温度的测量,用16位二进制形式提供,形式表达,其中S为符号位。
例 如: +125℃的数字输出为07D0H ;-55℃的数字输出为 FC90H。
正温度 直接把16进制数转成10进制即得到温度值 ;
负温度 把得到的16进制数 取反后 加1 再转成10进制数。
其中配置寄存器的格式如下: 低五位一直都是"1",TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要去改动。R1和R0用来设置分辨率,如下图所示:(DS18B20出厂时被设置为12位)
四、工作时序
DS18B20 单线通信功能是分时完成的,他有严格的时序概念,如果出现序列混乱, 1-WIRE 器件将不响应主机,因此读写时序很重要。系统对 DS18B20 的各种操作必须按协议进行。根据 DS18B20 的协议规定,微控制器控制 DS18B20 完成温度的转换必须经过以下 4 个步骤 :
(1)每次读写前对 DS18B20 进行复位初始化。复位要求主 CPU 将数据线下拉 500us ,然后释放, DS18B20 收到信号后等待 16us~60us 左右,然后发出60us~240us 的存在低脉冲,主 CPU 收到此信号后表示复位成功。
(2)发送一条 ROM 指令
(3)发送存储器指令
现在我们要做的是让DS18B20进行一次温度的转换,那具体的操作就是:
1、主机先作个复位操作,
2、主机再写跳过ROM的操作(CCH)命令,
3、然后主机接着写个转换温度的操作命令,后面释放总线至少一秒,让DS18B20完成转换的操作。在这里要注意的是每个命令字节在写的时候都是低字节先写,例如CCH的二进制为11001100,在写到总线上时要从低位开始写,写的顺序是“零、零、壹、壹、零、零、壹、壹”。整个操作的总线状态如下图。
读取RAM内的温度数据。同样,这个操作也要接照三个步骤。
1、主机发出复位操作并接收DS18B20的应答(存在)脉冲。
2、主机发出跳过对ROM操作的命令(CCH)。
3、主机发出读取RAM的命令(BEH),随后主机依次读取DS18B20发出的从第0一第8,共九个字节的数据。如果只想读取温度数据,那在读完第0和第1个数据后就不再理会后面DS18B20发出的数据即可。同样读取数据也是低位在前的。整个操作的总线状态如下图:
1.初始化时序
主机首先发出一个480-960微秒的低电平脉冲,然后释放总线变为高电平,并在随后的480微秒时间内对总线进行检测,如果有低电平出现说明总线上有器件已做出应答。若无低电平出现一直都是高电平说明总线上无器件应答。
作为从器件的DS18B20在一上电后就一直在检测总线上是否有480-960微秒的低电平出现,如果有,在总线转为高电平后等待15-60微秒后将总线电平拉低60-240微秒做出响应存在脉冲,告诉主机本器件已做好准备。若没有检测到就一直在检测等待。
bit Init_DS18B20(void)
{
bit flag; //储存DS18B20是否存在的标志,flag=0,存在;flag=1,不存在
DQ = 1; //先将数据线拉高
for(time=0;time<2;time++) ; //略微延时约6微秒//再将数据线从高拉低,要求保持480~960us
DQ = 0;
for(time=0;time<200;time++) ; //略微延时约600微秒//以向DS18B20发出一持续480~960us的低电平复位脉冲
DQ = 1; //释放数据线(将数据线拉高)
for(time=0;time<10;time++) ; //延时约30us(释放总线后需等待15~60us让DS18B20输出存在脉冲)
flag=DQ; //让单片机检测是否输出了存在脉冲(DQ=0表示存在)
for(time=0;time<200;time++) ; //延时足够长时间,等待存在脉冲输出完毕
return (flag); //返回检测成功标志
}
2.ReadOneChar
对于读数据操作时序也分为读0时序和读1时序两个过程。读时序是从主机把单总线拉低之后,在1微秒之后就得释放单总线为高电平,以让DS18B20把数据传输到单总线上。DS18B20在检测到总线被拉低1微秒后,便开始送出数据,若是要送出0就把总线拉为低电平直到读周期结束。若要送出1则释放总线为高电平。主机在一开始拉低总线1微秒后释放总线,然后在包括前面的拉低总线电平1微秒在内的15微秒时间内完成对总线进行采样检测,采样期内总线为低电平则确认为0。采样期内总线为高电平则确认为1。完成一个读时序过程,至少需要60us才能完成。
unsigned char ReadOneChar(void)
{
unsigned char i=0;
unsigned char dat; //储存读出的一个字节数据
for (i=0;i<8;i++)
{
DQ =1; // 先将数据线拉高
_nop_(); //等待一个机器周期
DQ = 0; //单片机从DS18B20读书据时,将数据线从高拉低即启动读时序
_nop_(); //等待一个机器周期
DQ = 1; //将数据线"人为"拉高,为单片机检测DS18B20的输出电平作准备
for(time=0;time<2;time++) ; //延时约6us,使主机在15us内采样
dat>>=1;
if(DQ==1)
dat|=0x80; //如果读到的数据是1,则将1存入dat
else
dat|=0x00; //如果读到的数据是0,则将0存入dat
for(time=0;time<15;time++); //延时3us,两个读时序之间必须有大于1us的恢复期
}
return(dat); //返回读出的十六进制数据
}
2.WriteOneChar
写周期最少为60微秒,最长不超过120微秒。写周期一开始做为主机先把总线拉低1微秒表示写周期开始。随后若主机想写0,则继续拉低电平最少60微秒直至写周期结束,然后释放总线为高电平。若主机想写1,在一开始拉低总线电平1微秒后就释放总线为高电平,一直到写周期结束。而做为从机的DS18B20则在检测到总线被拉底后等待15微秒然后从15us到45us开始对总线采样,在采样期内总线为高电平则为1,若采样期内总线为低电平则为0。
WriteOneChar(unsigned char dat)
{
unsigned char i=0;
for (i=0; i<8; i++)
{
DQ =1; // 先将数据线拉高
_nop_(); //等待一个机器周期
DQ=0; //将数据线从高拉低时即启动写时序
DQ=dat&0x01; //利用与运算取出要写的某位二进制数据,
//并将其送到数据线上等待DS18B20采样
for(time=0;time<10;time++) ;//延时约30us,DS18B20在拉低后的约15~60us期间从数据线上采样
DQ=1; //释放数据线
for(time=0;time<1;time++);//延时3us,两个写时序间至少需要1us的恢复期
dat>>=1; //将dat中的各二进制位数据右移1位
}
for(time=0;time<4;time++); //稍作延时,给硬件一点反应时间
}