设计模式 --- 结构型模式

news2024/10/7 15:29:11

一、概述

结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。

由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。

结构型模式分为以下 7 种:

  • 代理模式

  • 适配器模式

  • 装饰者模式

  • 桥接模式

  • 外观模式

  • 组合模式

  • 享元模式

 

 

二、代理模式

2.1、概述

由于某些原因需要给某对象提供一个代理以控制对该对象的访问。这时,访问对象不适合或者不能直接引用目标对象,代理对象作为访问对象和目标对象之间的中介。

Java中的代理按照代理类生成时机不同又分为静态代理和动态代理。静态代理代理类在编译期就生成,而动态代理代理类则是在Java运行时动态生成。动态代理又有JDK代理和CGLib代理两种。

 

2.2、结构

代理(Proxy)模式分为三种角色:

  • 抽象主题(Subject)类: 通过接口或抽象类声明真实主题和代理对象实现的业务方法。

  • 真实主题(Real Subject)类: 实现了抽象主题中的具体业务,是代理对象所代表的真实对象,是最终要引用的对象。

  • 代理(Proxy)类 : 提供了与真实主题相同的接口,其内部含有对真实主题的引用,它可以访问、控制或扩展真实主题的功能。

 

2.3、静态代理

我们通过案例来感受一下静态代理。

【例】火车站卖票


如果要买火车票的话,需要去火车站买票,坐车到火车站,排队等一系列的操作,显然比较麻烦。而火车站在多个地方都有代售点,我们去代售点买票就方便很多了。这个例子其实就是典型的代理模式,火车站是目标对象,代售点是代理对象。类图如下:

代码如下 :

//卖票接口
public interface SellTickets {
    void sell();
}

//火车站  火车站具有卖票功能,所以需要实现SellTickets接口
public class TrainStation implements SellTickets {

    public void sell() {
        System.out.println("火车站卖票");
    }
}

//代售点
public class ProxyPoint implements SellTickets {

    private TrainStation station = new TrainStation();

    public void sell() {
        System.out.println("代理点收取一些服务费用");
        station.sell();
    }
}

//测试类
public class Client {
    public static void main(String[] args) {
        ProxyPoint pp = new ProxyPoint();
        pp.sell();
    }
}

从上面代码中可以看出测试类直接访问的是ProxyPoint类对象,也就是说ProxyPoint作为访问对象和目标对象的中介。同时也对sell方法进行了增强(代理点收取一些服务费用)。

 

2.4、JDK动态代理

接下来我们使用动态代理实现上面案例,先说说JDK提供的动态代理。Java中提供了一个动态代理类Proxy,Proxy并不是我们上述所说的代理对象的类,而是提供了一个创建代理对象的静态方法(newProxyInstance方法)来获取代理对象。

代码如下:

//卖票接口
public interface SellTickets {
    void sell();
}

//火车站  火车站具有卖票功能,所以需要实现SellTickets接口
public class TrainStation implements SellTickets {

    public void sell() {
        System.out.println("火车站卖票");
    }
}

//代理工厂,用来创建代理对象
public class ProxyFactory {

    private TrainStation station = new TrainStation();

    public SellTickets getProxyObject() {
        //使用Proxy获取代理对象
        /*
            newProxyInstance()方法参数说明:
                ClassLoader loader : 类加载器,用于加载代理类,使用真实对象的类加载器即可
                Class<?>[] interfaces : 真实对象所实现的接口,代理模式真实对象和代理对象实现相同的接口
                InvocationHandler h : 代理对象的调用处理程序
         */
        SellTickets sellTickets = (SellTickets) Proxy.newProxyInstance(station.getClass().getClassLoader(),
                station.getClass().getInterfaces(),
                new InvocationHandler() {
                    /*
                        InvocationHandler中invoke方法参数说明:
                            proxy : 代理对象
                            method : 对应于在代理对象上调用的接口方法的 Method 实例
                            args : 代理对象调用接口方法时传递的实际参数
                     */
                    public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {

                        System.out.println("代理点收取一些服务费用(JDK动态代理方式)");
                        //执行真实对象
                        Object result = method.invoke(station, args);
                        return result;
                    }
                });
        return sellTickets;
    }
}

//测试类
public class Client {
    public static void main(String[] args) {
        //获取代理对象
        ProxyFactory factory = new ProxyFactory();
        
        SellTickets proxyObject = factory.getProxyObject();
        proxyObject.sell();
    }
}

使用了动态代理,我们思考下面问题:

ProxyFactory是代理类吗?


ProxyFactory不是代理模式中所说的代理类,而代理类是程序在运行过程中动态的在内存中生成的类。通过阿里巴巴开源的 Java 诊断工具(Arthas【阿尔萨斯】)查看代理类的结构:

package com.sun.proxy;

import com.itheima.proxy.dynamic.jdk.SellTickets;
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
import java.lang.reflect.UndeclaredThrowableException;

public final class $Proxy0 extends Proxy implements SellTickets {
    private static Method m1;
    private static Method m2;
    private static Method m3;
    private static Method m0;

    public $Proxy0(InvocationHandler invocationHandler) {
        super(invocationHandler);
    }

    static {
        try {
            m1 = Class.forName("java.lang.Object").getMethod("equals", Class.forName("java.lang.Object"));
            m2 = Class.forName("java.lang.Object").getMethod("toString", new Class[0]);
            m3 = Class.forName("com.itheima.proxy.dynamic.jdk.SellTickets").getMethod("sell", new Class[0]);
            m0 = Class.forName("java.lang.Object").getMethod("hashCode", new Class[0]);
            return;
        }
        catch (NoSuchMethodException noSuchMethodException) {
            throw new NoSuchMethodError(noSuchMethodException.getMessage());
        }
        catch (ClassNotFoundException classNotFoundException) {
            throw new NoClassDefFoundError(classNotFoundException.getMessage());
        }
    }

    public final boolean equals(Object object) {
        try {
            return (Boolean)this.h.invoke(this, m1, new Object[]{object});
        }
        catch (Error | RuntimeException throwable) {
            throw throwable;
        }
        catch (Throwable throwable) {
            throw new UndeclaredThrowableException(throwable);
        }
    }

    public final String toString() {
        try {
            return (String)this.h.invoke(this, m2, null);
        }
        catch (Error | RuntimeException throwable) {
            throw throwable;
        }
        catch (Throwable throwable) {
            throw new UndeclaredThrowableException(throwable);
        }
    }

    public final int hashCode() {
        try {
            return (Integer)this.h.invoke(this, m0, null);
        }
        catch (Error | RuntimeException throwable) {
            throw throwable;
        }
        catch (Throwable throwable) {
            throw new UndeclaredThrowableException(throwable);
        }
    }

    public final void sell() {
        try {
            this.h.invoke(this, m3, null);
            return;
        }
        catch (Error | RuntimeException throwable) {
            throw throwable;
        }
        catch (Throwable throwable) {
            throw new UndeclaredThrowableException(throwable);
        }
    }
}

从上面的类中,我们可以看到以下几个信息:

  • 代理类($Proxy0)实现了SellTickets。这也就印证了我们之前说的真实类和代理类实现同样的接口。

  • 代理类($Proxy0)将我们提供了的匿名内部类对象传递给了父类。


动态代理的执行流程是什么样?


下面是摘取的重点代码:

//程序运行过程中动态生成的代理类
public final class $Proxy0 extends Proxy implements SellTickets {
    private static Method m3;

    public $Proxy0(InvocationHandler invocationHandler) {
        super(invocationHandler);
    }

    static {
        m3 = Class.forName("com.itheima.proxy.dynamic.jdk.SellTickets").getMethod("sell", new Class[0]);
    }

    public final void sell() {
        this.h.invoke(this, m3, null);
    }
}

//Java提供的动态代理相关类
public class Proxy implements java.io.Serializable {
	protected InvocationHandler h;
	 
	protected Proxy(InvocationHandler h) {
        this.h = h;
    }
}

//代理工厂类
public class ProxyFactory {

    private TrainStation station = new TrainStation();

    public SellTickets getProxyObject() {
        SellTickets sellTickets = (SellTickets) Proxy.newProxyInstance(station.getClass().getClassLoader(),
                station.getClass().getInterfaces(),
                new InvocationHandler() {
                    
                    public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {

                        System.out.println("代理点收取一些服务费用(JDK动态代理方式)");
                        Object result = method.invoke(station, args);
                        return result;
                    }
                });
        return sellTickets;
    }
}


//测试访问类
public class Client {
    public static void main(String[] args) {
        //获取代理对象
        ProxyFactory factory = new ProxyFactory();
        SellTickets proxyObject = factory.getProxyObject();
        proxyObject.sell();
    }
}

执行流程如下:

  1. 在测试类中通过代理对象调用sell()方法

  2. 根据多态的特性,执行的是代理类($Proxy0)中的sell()方法

  3. 代理类($Proxy0)中的sell()方法中又调用了InvocationHandler接口的子实现类对象的invoke方法

  4. invoke方法通过反射执行了真实对象所属类(TrainStation)中的sell()方法

 

2.5、CGLIB动态代理

同样是上面的案例,我们再次使用CGLIB代理实现。

如果没有定义SellTickets接口,只定义了TrainStation(火车站类)。很显然JDK代理是无法使用了,因为JDK动态代理要求必须定义接口,对接口进行代理。

CGLIB是一个功能强大,高性能的代码生成包。它为没有实现接口的类提供代理,为JDK的动态代理提供了很好的补充。

CGLIB是第三方提供的包,所以需要引入jar包的坐标:

<dependency>
    <groupId>cglib</groupId>
    <artifactId>cglib</artifactId>
    <version>2.2.2</version>
</dependency>

代码如下:

//火车站
public class TrainStation {

    public void sell() {
        System.out.println("火车站卖票");
    }
}

//代理工厂
public class ProxyFactory implements MethodInterceptor {

    private TrainStation target = new TrainStation();

    public TrainStation getProxyObject() {
        //创建Enhancer对象,类似于JDK动态代理的Proxy类,下一步就是设置几个参数
        Enhancer enhancer =new Enhancer();
        //设置父类的字节码对象
        enhancer.setSuperclass(target.getClass());
        //设置回调函数
        enhancer.setCallback(this);
        //创建代理对象
        TrainStation obj = (TrainStation) enhancer.create();
        return obj;
    }

    /*
        intercept方法参数说明:
            o : 代理对象
            method : 真实对象中的方法的Method实例
            args : 实际参数
            methodProxy :代理对象中的方法的method实例
     */
    public TrainStation intercept(Object o, Method method, Object[] args, MethodProxy methodProxy) throws Throwable {
        System.out.println("代理点收取一些服务费用(CGLIB动态代理方式)");
        TrainStation result = (TrainStation) methodProxy.invokeSuper(o, args);
        return result;
    }
}

//测试类
public class Client {
    public static void main(String[] args) {
        //创建代理工厂对象
        ProxyFactory factory = new ProxyFactory();
        //获取代理对象
        TrainStation proxyObject = factory.getProxyObject();

        proxyObject.sell();
    }
}

 

2.6、三种代理的对比

  • jdk代理和CGLIB代理

    使用CGLib实现动态代理,CGLib底层采用ASM字节码生成框架,使用字节码技术生成代理类,在JDK1.6之前比使用Java反射效率要高。唯一需要注意的是,CGLib不能对声明为final的类或者方法进行代理,因为CGLib原理是动态生成被代理类的子类。

    在JDK1.6、JDK1.7、JDK1.8逐步对JDK动态代理优化之后,在调用次数较少的情况下,JDK代理效率高于CGLib代理效率,只有当进行大量调用的时候,JDK1.6和JDK1.7比CGLib代理效率低一点,但是到JDK1.8的时候,JDK代理效率高于CGLib代理。所以如果有接口使用JDK动态代理,如果没有接口使用CGLIB代理。

  • 动态代理和静态代理

    动态代理与静态代理相比较,最大的好处是接口中声明的所有方法都被转移到调用处理器一个集中的方法中处理(InvocationHandler.invoke)。这样,在接口方法数量比较多的时候,我们可以进行灵活处理,而不需要像静态代理那样每一个方法进行中转。

    如果接口增加一个方法,静态代理模式除了所有实现类需要实现这个方法外,所有代理类也需要实现此方法。增加了代码维护的复杂度。而动态代理不会出现该问题

2.7、优缺点

优点:

  • 代理模式在客户端与目标对象之间起到一个中介作用和保护目标对象的作用;

  • 代理对象可以扩展目标对象的功能;

  • 代理模式能将客户端与目标对象分离,在一定程度上降低了系统的耦合度;

缺点:

  • 增加了系统的复杂度;

 

2.8、使用场景

  • 远程(Remote)代理

    本地服务通过网络请求远程服务。为了实现本地到远程的通信,我们需要实现网络通信,处理其中可能的异常。为良好的代码设计和可维护性,我们将网络通信部分隐藏起来,只暴露给本地服务一个接口,通过该接口即可访问远程服务提供的功能,而不必过多关心通信部分的细节。

  • 防火墙(Firewall)代理

    当你将浏览器配置成使用代理功能时,防火墙就将你的浏览器的请求转给互联网;当互联网返回响应时,代理服务器再把它转给你的浏览器。

  • 保护(Protect or Access)代理

    控制对一个对象的访问,如果需要,可以给不同的用户提供不同级别的使用权限。

 

 

三、适配器模式

3.1、概述

如果去欧洲国家去旅游的话,他们的插座如下图最左边,是欧洲标准。而我们使用的插头如下图最右边的。因此我们的笔记本电脑,手机在当地不能直接充电。所以就需要一个插座转换器,转换器第1面插入当地的插座,第2面供我们充电,这样使得我们的插头在当地能使用。生活中这样的例子很多,手机充电器(将220v转换为5v的电压),读卡器等,其实就是使用到了适配器模式。

定义:

  • 将一个类的接口转换成客户希望的另外一个接口,使得原本由于接口不兼容而不能一起工作的那些类能一起工作。
  • 适配器模式分为类适配器模式和对象适配器模式,前者类之间的耦合度比后者高,且要求程序员了解现有组件库中的相关组件的内部结构,所以应用相对较少些。

   

3.2、结构

适配器模式(Adapter)包含以下主要角色:

  • 目标(Target)接口:当前系统业务所期待的接口,它可以是抽象类或接口。

  • 适配者(Adaptee)类:它是被访问和适配的现存组件库中的组件接口。

  • 适配器(Adapter)类:它是一个转换器,通过继承或引用适配者的对象,把适配者接口转换成目标接口,让客户按目标接口的格式访问适配者。

 

3.3、类适配器模式

实现方式:定义一个适配器类来实现当前系统的业务接口,同时又继承现有组件库中已经存在的组件。

【例】读卡器


现有一台电脑只能读取SD卡,而要读取TF卡中的内容的话就需要使用到适配器模式。创建一个读卡器,将TF卡中的内容读取出来。

类图如下:

代码如下

//SD卡的接口
public interface SDCard {
    //读取SD卡方法
    String readSD();
    //写入SD卡功能
    void writeSD(String msg);
}

//SD卡实现类
public class SDCardImpl implements SDCard {
    public String readSD() {
        String msg = "sd card read a msg :hello word SD";
        return msg;
    }

    public void writeSD(String msg) {
        System.out.println("sd card write msg : " + msg);
    }
}

//电脑类
public class Computer {

    public String readSD(SDCard sdCard) {
        if(sdCard == null) {
            throw new NullPointerException("sd card null");
        }
        return sdCard.readSD();
    }
}

//TF卡接口
public interface TFCard {
    //读取TF卡方法
    String readTF();
    //写入TF卡功能
    void writeTF(String msg);
}

//TF卡实现类
public class TFCardImpl implements TFCard {

    public String readTF() {
        String msg ="tf card read msg : hello word tf card";
        return msg;
    }

    public void writeTF(String msg) {
        System.out.println("tf card write a msg : " + msg);
    }
}

//定义适配器类(SD兼容TF)
public class SDAdapterTF extends TFCardImpl implements SDCard {

    public String readSD() {
        System.out.println("adapter read tf card ");
        return readTF();
    }

    public void writeSD(String msg) {
        System.out.println("adapter write tf card");
        writeTF(msg);
    }
}

//测试类
public class Client {
    public static void main(String[] args) {
        Computer computer = new Computer();
        SDCard sdCard = new SDCardImpl();
        System.out.println(computer.readSD(sdCard));

        System.out.println("------------");

        SDAdapterTF adapter = new SDAdapterTF();
        System.out.println(computer.readSD(adapter));
    }
}

类适配器模式违背了合成复用原则。类适配器是客户类有一个接口规范的情况下可用,反之不可用。

 

3.4、对象适配器模式

实现方式:对象适配器模式可釆用将现有组件库中已经实现的组件引入适配器类中,该类同时实现当前系统的业务接口。

【例】读卡器


我们使用对象适配器模式将读卡器的案例进行改写。类图如下:

代码如下:

类适配器模式的代码,我们只需要修改适配器类(SDAdapterTF)和测试类。

//创建适配器对象(SD兼容TF)
public class SDAdapterTF  implements SDCard {

    private TFCard tfCard;

    public SDAdapterTF(TFCard tfCard) {
        this.tfCard = tfCard;
    }

    public String readSD() {
        System.out.println("adapter read tf card ");
        return tfCard.readTF();
    }

    public void writeSD(String msg) {
        System.out.println("adapter write tf card");
        tfCard.writeTF(msg);
    }
}

//测试类
public class Client {
    public static void main(String[] args) {
        Computer computer = new Computer();
        SDCard sdCard = new SDCardImpl();
        System.out.println(computer.readSD(sdCard));

        System.out.println("------------");

        TFCard tfCard = new TFCardImpl();
        SDAdapterTF adapter = new SDAdapterTF(tfCard);
        System.out.println(computer.readSD(adapter));
    }
}

注意:还有一个适配器模式是接口适配器模式。当不希望实现一个接口中所有的方法时,可以创建一个抽象类Adapter ,实现所有方法。而此时我们只需要继承该抽象类即可。

    

3.5、应用场景

  • 以前开发的系统存在满足新系统功能需求的类,但其接口同新系统的接口不一致。

  • 使用第三方提供的组件,但组件接口定义和自己要求的接口定义不同。

 

3.6、JDK源码分析

Reader(字符流)、InputStream(字节流)的适配使用的是InputStreamReader。

InputStreamReader继承自java.io包中的Reader,对他中的抽象的未实现的方法给出实现。如:

public int read() throws IOException {
    return sd.read();
}

public int read(char cbuf[], int offset, int length) throws IOException {
    return sd.read(cbuf, offset, length);
}

如上代码中的sd(StreamDecoder类对象),在Sun的JDK实现中,实际的方法实现是对sun.nio.cs.StreamDecoder类的同名方法的调用封装。类结构图如下:

从上图可以看出:

  • InputStreamReader是对同样实现了Reader的StreamDecoder的封装。

  • StreamDecoder不是Java SE API中的内容,是Sun JDK给出的自身实现。但我们知道他们对构造方法中的字节流类(InputStream)进行封装,并通过该类进行了字节流和字符流之间的解码转换。

结论:

从表层来看,InputStreamReader做了InputStream字节流类到Reader字符流之间的转换。而从如上Sun JDK中的实现类关系结构中可以看出,是StreamDecoder的设计实现在实际上采用了适配器模式。

 

 

四、装饰者模式

4.1、概述

我们先来看一个快餐店的例子。

快餐店有炒面、炒饭这些快餐,可以额外附加鸡蛋、火腿、培根这些配菜,当然加配菜需要额外加钱,每个配菜的价钱通常不太一样,那么计算总价就会显得比较麻烦。

使用继承的方式存在的问题:

  • 扩展性不好

    如果要再加一种配料(火腿肠),我们就会发现需要给FriedRice和FriedNoodles分别定义一个子类。如果要新增一个快餐品类(炒河粉)的话,就需要定义更多的子类。

  • 产生过多的子类

定义:

指在不改变现有对象结构的情况下,动态地给该对象增加一些职责(即增加其额外功能)的模式。

 

4.2、结构

装饰(Decorator)模式中的角色:

  • 抽象构件(Component)角色 :定义一个抽象接口以规范准备接收附加责任的对象。

  • 具体构件(Concrete Component)角色 :实现抽象构件,通过装饰角色为其添加一些职责。

  • 抽象装饰(Decorator)角色 : 继承或实现抽象构件,并包含具体构件的实例,可以通过其子类扩展具体构件的功能。

  • 具体装饰(ConcreteDecorator)角色 :实现抽象装饰的相关方法,并给具体构件对象添加附加的责任。

 

4.3、案例

我们使用装饰者模式对快餐店案例进行改进,体会装饰者模式的精髓。

类图如下:

代码如下:

//快餐接口
public abstract class FastFood {
    private float price;
    private String desc;

    public FastFood() {
    }

    public FastFood(float price, String desc) {
        this.price = price;
        this.desc = desc;
    }

    public void setPrice(float price) {
        this.price = price;
    }

    public float getPrice() {
        return price;
    }

    public String getDesc() {
        return desc;
    }

    public void setDesc(String desc) {
        this.desc = desc;
    }

    public abstract float cost();  //获取价格
}

//炒饭
public class FriedRice extends FastFood {

    public FriedRice() {
        super(10, "炒饭");
    }

    public float cost() {
        return getPrice();
    }
}

//炒面
public class FriedNoodles extends FastFood {

    public FriedNoodles() {
        super(12, "炒面");
    }

    public float cost() {
        return getPrice();
    }
}

//配料类
public abstract class Garnish extends FastFood {

    private FastFood fastFood;

    public FastFood getFastFood() {
        return fastFood;
    }

    public void setFastFood(FastFood fastFood) {
        this.fastFood = fastFood;
    }

    public Garnish(FastFood fastFood, float price, String desc) {
        super(price,desc);
        this.fastFood = fastFood;
    }
}

//鸡蛋配料
public class Egg extends Garnish {

    public Egg(FastFood fastFood) {
        super(fastFood,1,"鸡蛋");
    }

    public float cost() {
        return getPrice() + getFastFood().getPrice();
    }

    @Override
    public String getDesc() {
        return super.getDesc() + getFastFood().getDesc();
    }
}

//培根配料
public class Bacon extends Garnish {

    public Bacon(FastFood fastFood) {

        super(fastFood,2,"培根");
    }

    @Override
    public float cost() {
        return getPrice() + getFastFood().getPrice();
    }

    @Override
    public String getDesc() {
        return super.getDesc() + getFastFood().getDesc();
    }
}

//测试类
public class Client {
    public static void main(String[] args) {
        //点一份炒饭
        FastFood food = new FriedRice();
        //花费的价格
        System.out.println(food.getDesc() + " " + food.cost() + "元");

        System.out.println("========");
        //点一份加鸡蛋的炒饭
        FastFood food1 = new FriedRice();

        food1 = new Egg(food1);
        //花费的价格
        System.out.println(food1.getDesc() + " " + food1.cost() + "元");

        System.out.println("========");
        //点一份加培根的炒面
        FastFood food2 = new FriedNoodles();
        food2 = new Bacon(food2);
        //花费的价格
        System.out.println(food2.getDesc() + " " + food2.cost() + "元");
    }
}

 好处:

  • 饰者模式可以带来比继承更加灵活性的扩展功能,使用更加方便,可以通过组合不同的装饰者对象来获取具有不同行为状态的多样化的结果。装饰者模式比继承更具良好的扩展性,完美的遵循开闭原则,继承是静态的附加责任,装饰者则是动态的附加责任。

  • 装饰类和被装饰类可以独立发展,不会相互耦合,装饰模式是继承的一个替代模式,装饰模式可以动态扩展一个实现类的功能。

 

4.4、使用场景

  • 当不能采用继承的方式对系统进行扩充或者采用继承不利于系统扩展和维护时。

    不能采用继承的情况主要有两类:

    1. 第一类是系统中存在大量独立的扩展,为支持每一种组合将产生大量的子类,使得子类数目呈爆炸性增长;

    2. 第二类是因为类定义不能继承(如final类)

  • 在不影响其他对象的情况下,以动态、透明的方式给单个对象添加职责。

  • 当对象的功能要求可以动态地添加,也可以再动态地撤销时。

 

4.5、JDK源码解析

IO流中的包装类使用到了装饰者模式。BufferedInputStream,BufferedOutputStream,BufferedReader,BufferedWriter。

我们以BufferedWriter举例来说明,先看看如何使用BufferedWriter

public class Demo {
    public static void main(String[] args) throws Exception{
        //创建BufferedWriter对象
        //创建FileWriter对象
        FileWriter fw = new FileWriter("C:\\Users\\Think\\Desktop\\a.txt");
        BufferedWriter bw = new BufferedWriter(fw);

        //写数据
        bw.write("hello Buffered");

        bw.close();
    }
}

使用起来感觉确实像是装饰者模式,接下来看它们的结构:

小结:

        BufferedWriter使用装饰者模式对Writer子实现类进行了增强,添加了缓冲区,提高了写数据的效率。

  

4.6、代理和装饰者的区别

静态代理和装饰者模式的区别:

  • 相同点:

    • 都要实现与目标类相同的业务接口

    • 在两个类中都要声明目标对象

    • 都可以在不修改目标类的前提下增强目标方法

  • 不同点:

    • 目的不同 装饰者是为了增强目标对象 静态代理是为了保护和隐藏目标对象

    • 获取目标对象构建的地方不同 装饰者是由外界传递进来,可以通过构造方法传递 静态代理是在代理类内部创建,以此来隐藏目标对象

 

 

五、桥接模式

后续补充...

六、外观模式

后续补充...

七、组合模式

后续补充...

八、享元模式

 后续补充...

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/463592.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

L2TP Client-initated场景

L2TP Client-initated场景 1. 原理 ![原理](https://img-blog.csdnimg.cn/66ce3169502b4252bca5d9d7a6c0027c.png)1.1 阶段1&#xff1a;创建L2TP隧道 C与LNS通过交互三条消息协商隧道ID、UDP端口&#xff08;1701&#xff09;、主机名称、L2TP版本、隧道验证等参数。 1.2 …

使用Spark实现词频统计

文章目录 一&#xff0c;词频统计准备工作&#xff08;一&#xff09;版本选择问题&#xff08;二&#xff09;安装Scala2.12.15&#xff08;三&#xff09;启动集群的HDFS与Spark&#xff08;四&#xff09;在HDFS上准备单词文件 二&#xff0c;本地模式运行Spark项目&#xf…

Meta的分割一切模型SAM( Segment Anything )测试

Meta不久前开源发布了一款图像处理模型&#xff0c;即分割一切模型&#xff1a;Segment Anything Model&#xff0c;简称 SAM&#xff0c;号称要从任意一张图片中分割万物&#xff0c;源码地址为&#xff1a; https://github.com/facebookresearch/segment-anything打开后看到…

ssm+java企业公司产品分销商管理系统

一、 二、经营管理&#xff1a; ①分销商每月提交自己进多少货物&#xff08;从总部进购了多少“鹊巢”的商品给自己负责区的大型商超&#xff09;——对应的种类一共进多少货物&#xff1b;该种类中具体的产品又进了多少货物具体到&#xff08;参考三产品管理模块&#xff09;…

RelativeLayout相对布局

一、官方地址&#xff1a; https://developer.android.google.cn/reference/kotlin/android/widget/RelativeLayout?hlen 二、概述 相对布局&#xff08;RelativeLayout&#xff09;是一种根据父容器和兄弟控件作为参照来确定控件位置的布局方式 三、基本格式 <RelativeLay…

Nacos注册中心的使用

文章目录 Nacos注册中心1. 服务注册到nacos1&#xff09;引入依赖2&#xff09;配置nacos地址3&#xff09;重启 2.服务分级存储模型2.1.给user-service配置集群2.2.同集群优先的负载均衡 3.权重配置 Nacos注册中心 国内公司一般都推崇阿里巴巴的技术&#xff0c;比如注册中心…

Docker安装Redis(普通安装+在线安装+离线安装)

文章目录 Redis概述一、磁盘安装1.1 安装环境1.2 安装步骤1.3 服务器启停命令 二、docker安装1.在线安装2.离线安装 总结 Redis概述 Redis&#xff0c;英文全称是Remote Dictionary Server&#xff08;远程字典服务&#xff09;&#xff0c;是一个开源的使用ANSI C语言编写、支…

ext-1:PDK工具包编译出例程

1、TI的单独StarterWare不更新后&#xff0c;后续维护和更新的是 PROCESSOR-SDK-AM335X 软件开发套件 &#xff08;PDK&#xff09;&#xff0c;对比以前的&#xff0c;里面没有例程&#xff0c;所以下载安装完需要自己编译出example例程。 因为编译出example例程中间会出现很…

设计模式--适配器模式

目录 基本介绍 工作原理 类适配模式 介绍 应用实例介绍 类适配器模式注意事项和细节 对象适配模式 介绍 对象适配器模式注意事项和细节 接口适配器模式 介绍 适配器模式的注意事项和细节 基本介绍 (1) 适配器模式(Adapter Pattern) 将某个类的接口转换成客户端期望的…

从JDK源码级别彻底剖析JVM类加载机制

loadClass的类加载过程 加载 >> 验证 >> 准备 >> 解析 >> 初始化 >> 使用 >> 卸载 ● 加载&#xff1a;在硬盘上查找并通过IO读入字节码文件&#xff0c;使用到类时才会加载&#xff0c;例如调用类的main()方法&#xff0c;new对象等等&am…

如何选择最适合你的数据库解决方案:PostgreSQL VS MySQL 技术选型对比

文章目录 PostgreSQL与MySQL技术选型对比什么是 WordPress 数据库&#xff1f;什么是 PostgreSQL&#xff1f;历史主要特点高度可靠灵活性可扩展性复制用例什么是 MySQL&#xff1f;历史主要特点使用方便高灵活性可靠性和安全性高性能可扩展开源许可证用例PostgreSQL 与 MySQL&…

状态模式——随遇而安

● 状态模式介绍 状态模式中的行为是由状态来决定的&#xff0c;不用的状态下有不同的行为。状态模式和策略模式结构几乎完全一样&#xff0c;但它们的目的、本质却完全不一样就。状态模式的行为是平行的、不可替代的&#xff0c;策略模式的行为是彼此孤立、可相互替换的。用一…

【UE】一个简易的游戏计时器

效果 步骤 1. 打开“ThirdPersonGameMode” 创建两个整型变量&#xff0c;分别命名为“Seconds”、“Minutes” 在事件图表中添加如下节点&#xff0c;实现“Seconds”每秒加1 继续添加如下节点&#xff1a; 当秒数大于60时&#xff0c;就让分钟数1&#xff0c;然后将秒数重新…

P1045 [NOIP2003 普及组] 麦森数

题目描述 形如 2&#xfffd;−12P−1 的素数称为麦森数&#xff0c;这时 &#xfffd;P 一定也是个素数。但反过来不一定&#xff0c;即如果 &#xfffd;P 是个素数&#xff0c;2&#xfffd;−12P−1 不一定也是素数。到 1998 年底&#xff0c;人们已找到了 37 个麦森数。最…

AI数字人技术在高中历史课堂上的应用

引言 介绍AI数字人技术的概念和特点介绍AI数字人技术在教育领域的价值和意义提出本文的主题和目的&#xff1a;探讨AI数字人技术在高中历史课堂上的应用 AI数字人技术在高中历史课堂上的应用方式 介绍AI数字人技术可以通过还原历史人物说话视频&#xff0c;利用历史人物籍贯…

HJHD-91晃电保护器 新款35mm卡轨安装 josef约瑟

名称&#xff1a;晃电保护器品牌&#xff1a;JOSEF约瑟型号&#xff1a;HJHD-91额定电压&#xff1a;110、220VAC触点容量&#xff1a;250V/5A动作时间&#xff1a;不大于20ms功率消耗&#xff1a;不大于5W/5VA HJHD系列晃电保护器 HJHD-91晃电保护器 抗晃电继电器 1.特点和用途…

压力测试工具Jmeter入门

文章目录 一、JMeter概述1、JMeter简介2、JMeter的作用 二、JMeter下载三、JMeter测试1.创建线程组2、配置元件3、为线程添加监听器4、查看报告 一、JMeter概述 1、JMeter简介 Apache JMeter 是 Apache 组织基于 Java 开发的压力测试工具&#xff0c;用于对软件做压力测试。 …

Nginx安装删除

1.卸载Nginx ps -ef|grep nginx 查询Nginx 进程pid kill -9 7035 kill -9 7036 查找根下所有名字包含nginx的文件 find / -name nginx 执行命令 rm -rf *删除nignx安装的相关文件 下面开始安装,安装方式很多,可以选择官网下载后拖进linux 官网nginx: download 官网下载…

Mysql-JSON

一、根据JSON字段检索内容 语法: 使用 字段->$.json属性进行查询条件使用json_extract函数查询&#xff0c;json_extract(字段,"$.json属性")根据json数组查询&#xff0c;用JSON_CONTAINS(字段,JSON_OBJECT(json属性, "内容")) 二、检索查询 1.json…

Python之画一朵玫瑰花

效果&#xff1a; 步骤&#xff1a; 导入turtle库和time库设置画布大小和起始位置绘制红色花瓣&#xff0c;使用begin_fill()函数开始填充&#xff0c;fillcolor()函数设置填充颜色&#xff0c;circle()函数绘制圆形&#xff0c;fd()函数绘制直线&#xff0c;left()和right()函…