什么是分库分表?为什么需要分表?什么时候分库分表

news2024/11/18 21:49:37

不急于上手实战 ShardingSphere 框架,先来复习下分库分表的基础概念,技术名词大多晦涩难懂,不要死记硬背理解最重要,当你捅破那层窗户纸,发现其实它也就那么回事。

什么是分库分表

分库分表是在海量数据下,由于单库、表数据量过大,导致数据库性能持续下降的问题,演变出的技术方案。

分库分表是由分库分表这两个独立概念组成的,只不过通常分库与分表的操作会同时进行,以至于我们习惯性的将它们合在一起叫做分库分表。

通过一定的规则,将原本数据量大的数据库拆分成多个单独的数据库,将原本数据量大的表拆分成若干个数据表,使得单一的库、表性能达到最优的效果(响应速度快),以此提升整体数据库性能。

为什么分库分表

单机数据库的存储能力、连接数是有限的,它自身就很容易会成为系统的瓶颈。当单表数据量在百万以里时,我们还可以通过添加从库、优化索引提升性能。

一旦数据量朝着千万以上趋势增长,再怎么优化数据库,很多操作性能仍下降严重。为了减少数据库的负担,提升数据库响应速度,缩短查询时间,这时候就需要进行分库分表。

为什么需要分库?

容量

我们给数据库实例分配的磁盘容量是固定的,数据量持续的大幅增长,用不了多久单机的容量就会承载不了这么多数据,解决办法简单粗暴,加容量!

连接数

单机的容量可以随意扩展,但数据库的连接数却是有限的,在高并发场景下多个业务同时对一个数据库操作,很容易将连接数耗尽导致 too many connections 报错,导致后续数据库无法正常访问。

可以通过 max_connections 查看 MySQL 最大连接数。

show variables like '%max_connections%'

将原本单数据库按不同业务拆分成订单库、物流库、积分库等不仅可以有效分摊数据库读写压力,也提高了系统容错性。

为什么需要分表?

做过报表业务的同学应该都体验过,一条 SQL 执行时间超过几十秒的场景。

导致数据库查询慢的原因有很多,SQL 没命中索引、like 扫全表、用了函数计算,这些都可以通过优化手段解决,可唯独数据量大是 MySQL 无法通过自身优化解决的。慢的根本原因是 InnoDB 存储引擎,聚簇索引结构的 B+tree 层级变高,磁盘 IO 变多查询性能变慢,详细原理自行查找一下,这里不用过多篇幅说明。

阿里的开发手册中有条建议,单表行数超 500 万行或者单表容量超过 2GB,就推荐分库分表,然而理想和实现总是有差距的,阿里这种体量的公司不差钱当然可以这么用,实际上很多公司单表数据几千万、亿级别仍然不选择分库分表。

什么时候分库分表

技术群里经常会有小伙伴问,到底什么情况下会用分库分表呢?

分库分表要解决的是现存海量数据访问的性能瓶颈,对持续激增的数据量所做出的架构预见性。

是否分库分表的关键指标是数据量,我们以 fire100.top 这个网站的资源表 t_resource 为例,系统在运行初始的时候,每天只有可怜的几十个资源上传,这时使用单库、单表的方式足以支持系统的存储,数据量小几乎没什么数据库性能瓶颈。

但某天开始一股神秘的流量进入,系统每日产生的资源数据量暴增至十万甚至上百万级别,这时资源表数据量到达千万级,查询响应变得缓慢,数据库的性能瓶颈逐渐显现。

以 MySQL 数据库为例,单表的数据量在达到亿条级别,通过加索引、SQL 调优等传统优化策略,性能提升依旧微乎其微时,就可以考虑做分库分表了。

既然 MySQL 存储海量数据时会出现性能瓶颈,那么我们是不是可以考虑用其他方案替代它?比如高性能的非关系型数据库 MongoDB

可以,但要看存储的数据类型!

现在互联网上大部分公司的核心数据几乎是存储在关系型数据库(MySQL、Oracle 等),因为它们有着 NoSQL 如法比拟的稳定性和可靠性,产品成熟生态系统完善,还有核心的事务功能特性,也是其他存储工具不具备的,而评论、点赞这些非核心数据还是可以考虑用 MongoDB 的。

如何分库分表

分库分表的核心就是对数据的分片(Sharding)并相对均匀的路由在不同的库、表中,以及分片后对数据的快速定位与检索结果的整合。

分库与分表可以从:垂直(纵向)和 水平(横向)两种纬度进行拆分。下边我们以经典的订单业务举例,看看如何拆分。

垂直拆分

1、垂直分库

垂直分库一般来说按照业务和功能的维度进行拆分,将不同业务数据分别放到不同的数据库中,核心理念 专库专用

按业务类型对数据分离,剥离为多个数据库,像订单、支付、会员、积分相关等表放在对应的订单库、支付库、会员库、积分库。不同业务禁止跨库直连,获取对方业务数据一律通过 API 接口交互,这也是微服务拆分的一个重要依据。

垂直分库很大程度上取决于业务的划分,但有时候业务间的划分并不是那么清晰,比如:电商中订单数据的拆分,其他很多业务都依赖于订单数据,有时候界线不是很好划分。

垂直分库把一个库的压力分摊到多个库,提升了一些数据库性能,但并没有解决由于单表数据量过大导致的性能问题,所以就需要配合后边的分表来解决。

2、垂直分表

垂直分表针对业务上字段比较多的大表进行的,一般是把业务宽表中比较独立的字段,或者不常用的字段拆分到单独的数据表中,是一种大表拆小表的模式。

例如:一张 t_order 订单表上有几十个字段,其中订单金额相关字段计算频繁,为了不影响订单表 t_order 的性能,就可以把订单金额相关字段拆出来单独维护一个 t_order_price_expansion 扩展表,这样每张表只存储原表的一部分字段,通过订单号 order_no 做关联,再将拆分出来的表路由到不同的库中。

数据库它是以行为单位将数据加载到内存中,这样拆分以后核心表大多是访问频率较高的字段,而且字段长度也都较短,因而可以加载更多数据到内存中,减少磁盘 IO,增加索引查询的命中率,进一步提升数据库性能。

水平拆分

上边垂直分库、垂直分表后还是会存在单库、表数据量过大的问题,当我们的应用已经无法在细粒度的垂直切分时,依旧存在单库读写、存储性能瓶颈,这时就要配合水平分库、水平分表一起了。

1、水平分库

水平分库是把同一个表按一定规则拆分到不同的数据库中,每个库可以位于不同的服务器上,以此实现水平扩展,是一种常见的提升数据库性能的方式。

例如:db_orde_1db_order_2 两个数据库内有完全相同的 t_order 表,我们在访问某一笔订单时可以通过对订单的订单编号取模的方式 订单编号 mod 2 (数据库实例数) ,指定该订单应该在哪个数据库中操作。

这种方案往往能解决单库存储量及性能瓶颈问题,但由于同一个表被分配在不同的数据库中,数据的访问需要额外的路由工作,因此系统的复杂度也被提升了。

2、水平分表

水平分表是在同一个数据库内,把一张大数据量的表按一定规则,切分成多个结构完全相同表,而每个表只存原表的一部分数据。

例如:一张 t_order 订单表有 900 万数据,经过水平拆分出来三个表,t_order_1t_order_2t_order_3,每张表存有数据 300 万,以此类推。

水平分表尽管拆分了表,但子表都还是在同一个数据库实例中,只是解决了单一表数据量过大的问题,并没有将拆分后的表分散到不同的机器上,还在竞争同一个物理机的 CPU、内存、网络 IO 等。要想进一步提升性能,就需要将拆分后的表分散到不同的数据库中,达到分布式的效果。

数据存在哪个库的表

分库分表以后会出现一个问题,一张表会出现在多个数据库里,到底该往哪个库的哪个表里存呢?

上边我们多次提到过一定规则 ,其实这个规则它是一种路由算法,决定了一条数据具体应该存在哪个数据库的哪张表里。

常见的有 取模算法 、范围限定算法范围+取模算法 、预定义算法

1、取模算法

关键字段取模(对 hash 结果取余数 hash (XXX) mod N),N 为数据库实例数或子表数量)是最为常见的一种路由方式。

以 t_order 订单表为例,先给数据库从 0 到 N-1 进行编号,对 t_order 订单表中 order_no 订单编号字段进行取模 hash(order_no) mod N,得到余数 ii=0 存第一个库,i=1 存第二个库,i=2 存第三个库,以此类推。

同一笔订单数据会落在同一个库、表里,查询时用相同的规则,用 t_order 订单编号作为查询条件,就能快速的定位到数据。

优点

实现简单,数据分布相对比较均匀,不易出现请求都打到一个库上的情况。

缺点

取模算法对集群的伸缩支持不太友好,集群中有 N 个数据库实 ·hash(user_id) mod N,当某一台机器宕机,本应该落在该数据库的请求就无法得到处理,这时宕掉的实例会被踢出集群。

此时机器数减少算法发生变化 hash(user_id) mod N-1,同一用户数据落在了在不同数据库中,等这台机器恢复,用 user_id 作为条件查询用户数据就会少一部分。

2、范围限定算法

范围限定算法以某些范围字段,如时间或 ID区拆分。

用户表 t_user 被拆分成 t_user_1t_user_2t_user_3 三张表,后续将 user_id 范围为 1 ~ 1000w 的用户数据放入 t_user_1,1000~ 2000w 放入 t_user_2,2000~3000w 放入 t_user_3,以此类推。按日期范围划分同理。

优点

  • 单表数据量是可控的
  • 水平扩展简单只需增加节点即可,无需对其他分片的数据进行迁移

缺点

  • 由于连续分片可能存在数据热点,比如按时间字段分片时,如果某一段时间(双 11 等大促)订单骤增,存 11 月数据的表可能会被频繁的读写,其他分片表存储的历史数据则很少被查询,导致数据倾斜,数据库压力分摊不均匀。

3、范围 + 取模算法

为了避免热点数据的问题,我们可以对上范围算法优化一下

这次我们先通过范围算法定义每个库的用户表 t_user 只存 1000w 数据,第一个 db_order_1 库存放 userId 从 1 ~ 1000w,第二个库 1000~2000w,第三个库 2000~3000w,以此类推。

每个库里再把用户表 t_user 拆分成 t_user_1t_user_2t_user_3 等,对 userd 进行取模路由到对应的表中。

有效的避免数据分布不均匀的问题,数据库水平扩展也简单,直接添加实例无需迁移历史数据。

4、地理位置分片

地理位置分片其实是一个更大的范围,按城市或者地域划分,比如华东、华北数据放在不同的分片库、表。

5、预定义算法

预定义算法是事先已经明确知道分库和分表的数量,可以直接将某类数据路由到指定库或表中,查询的时候亦是如此。

分库分表出来的问题

了解了上边分库分表的拆分方式不难发现,相比于拆分前的单库单表,系统的数据存储架构演变到现在已经变得非常复杂。看几个具有代表性的问题,比如:

分页、排序、跨节点联合查询

分页、排序、联合查询,这些看似普通,开发中使用频率较高的操作,在分库分表后却是让人非常头疼的问题。把分散在不同库中表的数据查询出来,再将所有结果进行汇总合并整理后提供给用户。

比如:我们要查询 11、12 月的订单数据,如果两个月的数据是分散到了不同的数据库实例,则要查询两个数据库相关的数据,在对数据合并排序、分页,过程繁琐复杂。

事务一致性

分库分表后由于表分布在不同库中,不可避免会带来跨库事务问题。后续会分别以阿里的 Seata 和 MySQL 的 XA 协议实现分布式事务,用来比较各自的优势与不足。

全局唯一的主键

分库分表后数据库表的主键 ID 业务意义就不大了,因为无法在标识唯一一条记录,例如:多张表 t_order_1t_order_2 的主键 ID 全部从 1 开始会重复,此时我们需要主动为一条记录分配一个 ID,这个全局唯一的 ID 就叫分布式ID,发放这个 ID 的系统通常被叫发号器。

多数据库高效治理

对多个数据库以及库内大量分片表的高效治理,是非常有必要,因为像某宝这种大厂一次大促下来,订单表可能会被拆分成成千上万个 t_order_n 表,如果没有高效的管理方案,手动建表、排查问题是一件很恐怖的事。

历史数据迁移

分库分表架构落地以后,首要的问题就是如何平滑的迁移历史数据,增量数据和全量数据迁移,这又是一个比较麻烦的事情,后边详细讲。

分库分表架构模式

分库分表架构主要有两种模式:client 客户端模式和 proxy 代理模式

客户模式

client 模式指分库分表的逻辑都在你的系统应用内部进行控制,应用会将拆分后的 SQL 直连多个数据库进行操作,然后本地进行数据的合并汇总等操作。

代理模式

proxy 代理模式将应用程序与 MySQL 数据库隔离,业务方的应用不在需要直连数据库,而是连接 proxy 代理服务,代理服务实现了 MySQL 的协议,对业务方来说代理服务就是数据库,它会将 SQL 分发到具体的数据库进行执行,并返回结果。该服务内有分库分表的配置,根据配置自动创建分片表。

如何抉择

如何选择 client 模式和 proxy 模式,我们可以从以下几个方面来简单做下比较。

1、性能

性能方面 client 模式表现的稍好一些,它是直接连接 MySQL 执行命令; proxy 代理服务则将整个执行链路延长了,应用 -> 代理服务 ->MySQL,可能导致性能有一些损耗,但两者差距并不是非常大。

2、复杂度

client 模式在开发使用通常引入一个 jar 可以; proxy 代理模式则需要搭建单独的服务,有一定的维护成本,既然是服务那么就要考虑高可用,毕竟应用的所有 SQL 都要通过它转发至 MySQL。

3、升级

client 模式分库分表一般是依赖基础架构团队的 Jar 包,一旦有版本升级或者 Bug 修改,所有应用到的项目都要跟着升级。小规模的团队服务少升级问题不大,如果是大公司服务规模大,且涉及到跨多部门,那么升级一次成本就比较高;

proxy 模式在升级方面优势很明显,发布新功能或者修复 Bug,只要重新部署代理服务集群即可,业务方是无感知的,但要保证发布过程中服务的可用性。

4、治理、监控

client 模式由于是内嵌在应用内,应用集群部署不太方便统一处理;proxy 模式在对 SQL 限流、读写权限控制、监控、告警等服务治理方面更优雅一些。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/463071.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

“星河杯”隐私计算大赛新闻发布会在京召开

4月24日下午,“星河杯”隐私计算大赛新闻发布会在京召开。本次大赛由中国信通院、中国通信学会、隐私计算联盟共同主办,中移动信息技术有限公司、联通数字科技有限公司、天翼电子商务有限公司、中国通信标准化协会大数据技术标准推进委员会联合协办&…

微信小程序 | 基于高德地图+ChatGPT实现旅游规划小程序

🎈🎈效果预览🎈🎈 ❤ 路劲规划 ❤ 功能总览 ❤ ChatGPT交互 一、需求背景 五一假期即即将到来,在大家都阳过之后,截止到目前这应该是最安全的一个假期。所以出去旅游想必是大多数人的选择。 然后&#x…

Activity中startForResult的原理分析

前言: 如果使用androidX支持库中的ComponentActivity,会推荐使用registerForActivityResult的方式。但是对于不支持androidX的项目,或者就是继承自Activity的页面来说,startActivityForResult仍然是唯一的选择。 如果想了解andr…

虹科教您 | 虹科RELY-TSN-KIT操作指南(3)——基于Linux系统进行TSN协议测试

随着技术的变革和实际生产业务需求的推动,工厂内部互联架构逐渐趋于扁平化(IT/OT融合),而TSN则是在这一背景下发展起来的新兴技术,旨在为以太网协议建立“通用”的时间敏感机制,以确保网络数据传输的时间确…

云计算服务安全评估办法

云计算服务安全评估办法 2019-07-22 14:46 来源: 网信办网站【字体:大 中 小】打印 国家互联网信息办公室 国家发展和改革委员会 工业和信息化部 财政部关于发布《云计算服务安全评估办法》的公告 2019年 第2号 为提高党政机关、关键信息基础设施运营者…

鸿蒙系统是什么?鸿蒙与开源鸿蒙的关系?鸿蒙系统的发展历程

鸿蒙OS分布式操作系统简介鸿蒙系统(HarmonyOS),是第一款基于微内核的全场景分布式OS,是华为自主研发的操作系统。现被华为捐献给开放原子基金会管理,为开放原子基金会下的一个项目。 从 系统定位 上来说,HarmonyOS是一…

explain都不懂?搞什么数据库优化,快进来学习了

文章目录 一、 前言二、MySQL EXPLAIN实战三、mysql EXPLAIN输出结果详解3.1 id详解3.2 select_type3.3 table3.4 partitions3.5 type3.6 possible_keys3.7key3.8 key_len3.9 ref3.10 rows3.11 filtered3.12 Extra 一、 前言 EXPLAIN 想必用过mysql的小伙伴都听过,…

PWM 呼吸灯实验

PWM 呼吸灯实验 FPGA实现一个PWM模块(硬件)来控制灯的亮灭。 实验原理 PWM本质上就是一个输出脉冲的硬件,通过改变一个周期高电平(占空比)的时间来对其他的硬件进行控制,比如电机。 呼吸灯的实现利用了人…

谈谈如何用开源网关进行 API 管理

需求痛点 1.企业不清楚到底有多少个API,无法形成API资产管理等问题。 2.API在不同集群的生命周期问题。 3.API运行状态监控和告警问题。 4.API请求限流、流量控制以及安全等问题。 功能介绍 Apinto的API管理提供API生命周期控制:可管理所有API&…

Cortex-R52 GIC:Generic Interrupt Controller(一)

ARM Cortex-R52 GIC:Generic Interrupt Controller 1.关于GIC 1.1 GIC Overview ARM的中断控制器被称为GIC(Generic Interrupt Controller),GIC是支持和管理系统中断的资源的模块。它支持中断优先级、中断路由到CPU或输出端口、中断抢占和中断虚拟化等功能。 中断…

深入浅出Rust核心概念:生命周期

简介 Rust是一种快速、安全、并发的系统级编程语言,它的设计目标是提供一种高效、内存安全的编程方式。而生命周期(Lifetime)是Rust语言中的一个核心概念,它与内存管理、函数传参和引用操作等方面密切相关。LZ将详细介绍Rust中生…

GitHub 开启 2FA 双重身份验证的方法

为什么要开启 2FA 自2023年3月13日起,我们登录 GitHub 都会看到一个要求 Enable 2FA 的重要提示,具体如下: GitHub users are now required to enable two-factor authentication as an additional security measure. Your activity on Git…

Matplotlib 轴标签和标题

我们可以使用 xlabel() 和 ylabel() 方法来设置 x 轴和 y 轴的标签。 实例 import numpy as np import matplotlib.pyplot as pltx np.array([1, 2, 3, 4]) y np.array([1, 4, 9, 16]) plt.plot(x, y)plt.xlabel("x - label") plt.ylabel("y - label")…

Java BIO

1.Java BIO(Blocking IO:同步并阻塞式IO)编程 1.1.基本介绍 1>.Java BIO就是传统的java io编程,其相关的类和接口在"java.io"包下; 2>.BIO(Blocking I/O): 同步阻塞,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处…

深入分析,Redis为什么这么快?

我们都知道Redis很快,它QPS可达10万(每秒请求数) Redis为什么这么快? 基于内存实现高效的数据结构合理的数据编码合理的线程模型虚拟内存机制 基于内存实现 我们都知道内存读写是比磁盘读写快很多的。Redis是基于内存存储实现的…

电磁兼容原理、方法及设计的科普好文

什么是电磁兼容 电磁兼容性(EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超…

操作系统之调度

目录 什么是调度 进程调度的时机、切换、过程与方式 调度器/调度程序 调度算法 先来先服务算法 短作业优先算法 高响应比优先算法 时间片轮转算法 优先级调度算法 多级反馈队列调度算法 什么是调度 调度的三个层次 高级调度 中级调度 低级调度 总结如下: …

利用docker部署深度学习环境摆脱操作系统版本限制与cuda版本限制

利用docker部署深度学习环境摆脱操作系统版本限制与cuda版本限制 文章背景描述: 近期公司想给客户部署OCR文本识别项目,项目用到了tensorflow1.13,可支持该框架版本的cuda得低于10.2,但是客户要求的操作系统版本是Ubuntu22.04&…

学成在线笔记+踩坑(9)——课程发布,xxl-job+消息SDK实现分布式事务、页面静态化、Hystrix熔断降级

导航: 【黑马Java笔记踩坑汇总】JavaSEJavaWebSSMSpringBoot瑞吉外卖SpringCloud黑马旅游谷粒商城学成在线牛客面试题_java黑马笔记 目录 1 业务流程,入库缓存ESMinIO存静态化页面 2 分布式事务技术方案 2.1 回顾本地事务和分布式事务 2.2 什么是CA…

Nginx下载和使用

nginx: downloadhttp://nginx.org/en/download.html下载成功后打开 \nginx-x.xx.x\conf\nginx.conf 文件 #user nobody; worker_processes 1;#error_log logs/error.log; #error_log logs/error.log notice; #error_log logs/error.log info;#pid logs/nginx.pid…