大数据电商数仓相关脚本

news2025/1/23 11:55:38

文章目录

    • 前言
    • 一、群起集群
      • 1. sc 脚本
      • 2. cluster 脚本
      • 3. myhadoop 脚本
      • 4. zk.sh 脚本
      • 5. kf.sh 脚本
      • 6. f1.sh 脚本
      • 7. f2.sh 脚本
    • 二、简便使用脚本
      • 1. xsync 脚本
      • 2. jpsall 脚本
      • 3. xcall.sh 脚本
      • 4. lg.sh 脚本
    • 三、数据传输相关脚本
      • 1. mysql_to_hdfs.sh 脚本
      • 2. hdfs_to_ods_db.sh 脚本
      • 3. hdfs_to_ods_log.sh 脚本
      • 4. ods_to_dwd_db.sh 脚本
      • 5. ods_to_dwd_log.sh 脚本
      • 6. dwd_to_dws.sh 脚本
      • 7. dws_to_dwt.sh 脚本
      • 8. dwt_to_ads.sh 脚本

前言

本文的19个自定义脚本是另一篇大数据电商数仓项目
https://blog.csdn.net/m0_48170265/article/details/130031285
所用到的一些自定义脚本,简化开发流程。

一、群起集群

1. sc 脚本

脚本篇幅少,但关联的相关内容最多。
一般用这个脚本就可以启动hadoop集群、hive数据库、kafka等服务(脚本嵌套脚本),但不含ke.sh等几个对这个电商数仓项目来说可用可不用的脚本内容

#!/bin/bash

case $1 in
"start"){

        #启动 cluster相关集群
        cluster start
        #启动 hiveservices相关集群
        hiveservices start


        };;
"stop"){

        #停止 cluster.sh相关集群
        cluster stop
        #停止 hiveservices相关集群
        hiveservices stop

};;
esac

注:sc 脚本中的 hiveservices 脚本不是自定义脚本,是hive解压后 bin 目录下自带的脚本

在这里插入图片描述

2. cluster 脚本

#!/bin/bash

case $1 in
"start"){
        echo ================== 启动 集群 ==================

        #启动 Zookeeper集群
        zk.sh start

        #启动 Hadoop集群
        myhadoop start

        #启动 Kafka采集集群
        kf.sh start

        #启动 Flume采集集群
        f1.sh start

        #启动 Flume消费集群
        f2.sh start

        };;
"stop"){
        echo ================== 停止 集群 ==================

        #停止 Flume消费集群
        f2.sh stop

        #停止 Flume采集集群
        f1.sh stop

        #停止 Kafka采集集群
        kf.sh stop

        #停止 Hadoop集群
        myhadoop stop

        #停止 Zookeeper集群
        zk.sh stop

};;
esac


3. myhadoop 脚本

启动 hadoop集群

#!/bin/bash

if [ $# -lt 1 ]
then
    echo "No Args Input..."
    exit ;
fi

case $1 in
"start")
        echo " =================== 启动 hadoop集群 ==================="

        echo " --------------- 启动 hdfs ---------------"
        ssh hadoop105 "/opt/module/hadoop-3.1.3/sbin/start-dfs.sh"
        echo " --------------- 启动 yarn ---------------"
        ssh hadoop106 "/opt/module/hadoop-3.1.3/sbin/start-yarn.sh"
        echo " --------------- 启动 historyserver ---------------"
        ssh hadoop105 "/opt/module/hadoop-3.1.3/bin/mapred --daemon start historyserver"
;;
"stop")
        echo " =================== 关闭 hadoop集群 ==================="

        echo " --------------- 关闭 historyserver ---------------"
        ssh hadoop105 "/opt/module/hadoop-3.1.3/bin/mapred --daemon stop historyserver"
        echo " --------------- 关闭 yarn ---------------"
        ssh hadoop106 "/opt/module/hadoop-3.1.3/sbin/stop-yarn.sh"
        echo " --------------- 关闭 hdfs ---------------"
        ssh hadoop105 "/opt/module/hadoop-3.1.3/sbin/stop-dfs.sh"
;;
*)
    echo "Input Args Error..."
;;
esac

4. zk.sh 脚本

#!/bin/bash

case $1 in
"start"){
        for i in hadoop105 hadoop106 hadoop107
        do
        echo ---------- zookeeper $i 启动 ------------
                ssh $i "/opt/module/zookeeper-3.5.7/bin/zkServer.sh start"
        done
};;
"stop"){
        for i in hadoop105 hadoop106 hadoop107
        do
        echo ---------- zookeeper $i 停止 ------------
                ssh $i "/opt/module/zookeeper-3.5.7/bin/zkServer.sh stop"
        done
};;
"status"){
        for i in hadoop105 hadoop106 hadoop107
        do
        echo ---------- zookeeper $i 状态 ------------
                ssh $i "/opt/module/zookeeper-3.5.7/bin/zkServer.sh status"
        done
};;
esac

5. kf.sh 脚本

#!/bin/bash

case $1 in
"start"){
    for i in hadoop105 hadoop106 hadoop107
    do
        echo " --------启动 $i Kafka-------"
        ssh $i "/opt/module/kafka/bin/kafka-server-start.sh -daemon /opt/module/kafka/config/server.properties "
    done
};;
"stop"){
    for i in hadoop105 hadoop106 hadoop107
    do
        echo " --------停止 $i Kafka-------"
        ssh $i "/opt/module/kafka/bin/kafka-server-stop.sh stop"
    done
};;
esac


6. f1.sh 脚本

#! /bin/bash

case $1 in
"start"){
        for i in hadoop105 hadoop106
        do
                echo " --------启动 $i 采集flume-------"
                ssh $i "nohup /opt/module/flume/bin/flume-ng agent --conf-file /opt/module/flume/conf/file-flume-kafka.conf --name a1 -Dflume.root.logger=INFO,LOGFILE >/opt/module/flume/log1.txt 2>&1  &"
        done
};;
"stop"){
        for i in hadoop105 hadoop106
        do
                echo " --------停止 $i 采集flume-------"
                ssh $i "ps -ef | grep file-flume-kafka | grep -v grep |awk  '{print \$2}' | xargs -n1 kill -9 "
        done

};;
esac


7. f2.sh 脚本

#! /bin/bash

case $1 in
"start"){
        for i in hadoop107
        do
                echo " --------启动 $i 消费flume-------"
                ssh $i "nohup /opt/module/flume/bin/flume-ng agent --conf-file /opt/module/flume/conf/kafka-flume-hdfs.conf --name a1 -Dflume.root.logger=INFO,LOGFILE >/opt/module/flume/log2.txt   2>&1 &"
        done
};;
"stop"){
        for i in hadoop107
        do
                echo " --------停止 $i 消费flume-------"
                ssh $i "ps -ef | grep kafka-flume-hdfs | grep -v grep |awk '{print \$2}' | xargs -n1 kill"
        done

};;
esac

二、简便使用脚本

1. xsync 脚本

进行文件或者目录的分发

#!/bin/bash

#1. 判断参数个数
if [ $# -lt 1 ]
then
    echo Not Enough Arguement!
    exit;
fi

#2. 遍历集群所有机器
for host in hadoop105 hadoop106 hadoop107
do
    echo ====================  $host  ====================
    #3. 遍历所有目录,挨个发送

    for file in $@
    do
        #4. 判断文件是否存在
        if [ -e $file ]
            then
                #5. 获取父目录
                pdir=$(cd -P $(dirname $file); pwd)

                #6. 获取当前文件的名称
                fname=$(basename $file)
                ssh $host "mkdir -p $pdir"
                rsync -av $pdir/$fname $host:$pdir
            else
                echo $file does not exists!
        fi
    done
done

2. jpsall 脚本

#!/bin/bash

for host in hadoop105 hadoop106 hadoop107
do
        echo =============== $host ===============
        ssh $host jps
done

3. xcall.sh 脚本

#! /bin/bash

for i in hadoop105 hadoop106 hadoop107
do
    echo --------- $i ----------
    ssh $i "$*"
done

如:

在这里插入图片描述

4. lg.sh 脚本

#!/bin/bash
for i in hadoop105 hadoop106; do
    echo "========== $i =========="
    ssh $i "cd /opt/module/applog/; java -jar gmall2020-mock-log-2020-05-10.jar >/dev/null 2>&1 &"
done

三、数据传输相关脚本

1. mysql_to_hdfs.sh 脚本

#! /bin/bash

APP=gmall
sqoop=/opt/module/sqoop/bin/sqoop

if [ -n "$2" ] ;then
    do_date=$2
else
    do_date=`date -d '-1 day' +%F`
fi

import_data(){
$sqoop import \
--connect jdbc:mysql://hadoop105:3306/$APP \
--username root \
--password 111111 \
--target-dir /origin_data/$APP/db/$1/$do_date \
--delete-target-dir \
--query "$2 and  \$CONDITIONS" \
--num-mappers 1 \
--fields-terminated-by '\t' \
--compress \
--compression-codec lzop \
--null-string '\\N' \
--null-non-string '\\N'

hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/common/hadoop-lzo-0.4.20.jar com.hadoop.compression.lzo.DistributedLzoIndexer /origin_data/$APP/db/$1/$do_date
}

import_order_info(){
  import_data order_info "select
                            id, 
                            final_total_amount, 
                            order_status, 
                            user_id, 
                            out_trade_no, 
                            create_time, 
                            operate_time,
                            province_id,
                            benefit_reduce_amount,
                            original_total_amount,
                            feight_fee      
                        from order_info
                        where (date_format(create_time,'%Y-%m-%d')='$do_date' 
                        or date_format(operate_time,'%Y-%m-%d')='$do_date')"
}

import_coupon_use(){
  import_data coupon_use "select
                          id,
                          coupon_id,
                          user_id,
                          order_id,
                          coupon_status,
                          get_time,
                          using_time,
                          used_time
                        from coupon_use
                        where (date_format(get_time,'%Y-%m-%d')='$do_date'
                        or date_format(using_time,'%Y-%m-%d')='$do_date'
                        or date_format(used_time,'%Y-%m-%d')='$do_date')"
}

import_order_status_log(){
  import_data order_status_log "select
                                  id,
                                  order_id,
                                  order_status,
                                  operate_time
                                from order_status_log
                                where date_format(operate_time,'%Y-%m-%d')='$do_date'"
}

import_activity_order(){
  import_data activity_order "select
                                id,
                                activity_id,
                                order_id,
                                create_time
                              from activity_order
                              where date_format(create_time,'%Y-%m-%d')='$do_date'"
}

import_user_info(){
  import_data "user_info" "select 
                            id,
                            name,
                            birthday,
                            gender,
                            email,
                            user_level, 
                            create_time,
                            operate_time
                          from user_info 
                          where (DATE_FORMAT(create_time,'%Y-%m-%d')='$do_date' 
                          or DATE_FORMAT(operate_time,'%Y-%m-%d')='$do_date')"
}

import_order_detail(){
  import_data order_detail "select 
                              od.id,
                              order_id, 
                              user_id, 
                              sku_id,
                              sku_name,
                              order_price,
                              sku_num, 
                              od.create_time,
                              source_type,
                              source_id  
                            from order_detail od
                            join order_info oi
                            on od.order_id=oi.id
                            where DATE_FORMAT(od.create_time,'%Y-%m-%d')='$do_date'"
}

import_payment_info(){
  import_data "payment_info"  "select 
                                id,  
                                out_trade_no, 
                                order_id, 
                                user_id, 
                                alipay_trade_no, 
                                total_amount,  
                                subject, 
                                payment_type, 
                                payment_time 
                              from payment_info 
                              where DATE_FORMAT(payment_time,'%Y-%m-%d')='$do_date'"
}

import_comment_info(){
  import_data comment_info "select
                              id,
                              user_id,
                              sku_id,
                              spu_id,
                              order_id,
                              appraise,
                              comment_txt,
                              create_time
                            from comment_info
                            where date_format(create_time,'%Y-%m-%d')='$do_date'"
}

import_order_refund_info(){
  import_data order_refund_info "select
                                id,
                                user_id,
                                order_id,
                                sku_id,
                                refund_type,
                                refund_num,
                                refund_amount,
                                refund_reason_type,
                                create_time
                              from order_refund_info
                              where date_format(create_time,'%Y-%m-%d')='$do_date'"
}

import_sku_info(){
  import_data sku_info "select 
                          id,
                          spu_id,
                          price,
                          sku_name,
                          sku_desc,
                          weight,
                          tm_id,
                          category3_id,
                          create_time
                        from sku_info where 1=1"
}

import_base_category1(){
  import_data "base_category1" "select 
                                  id,
                                  name 
                                from base_category1 where 1=1"
}

import_base_category2(){
  import_data "base_category2" "select
                                  id,
                                  name,
                                  category1_id 
                                from base_category2 where 1=1"
}

import_base_category3(){
  import_data "base_category3" "select
                                  id,
                                  name,
                                  category2_id
                                from base_category3 where 1=1"
}

import_base_province(){
  import_data base_province "select
                              id,
                              name,
                              region_id,
                              area_code,
                              iso_code
                            from base_province
                            where 1=1"
}

import_base_region(){
  import_data base_region "select
                              id,
                              region_name
                            from base_region
                            where 1=1"
}

import_base_trademark(){
  import_data base_trademark "select
                                tm_id,
                                tm_name
                              from base_trademark
                              where 1=1"
}

import_spu_info(){
  import_data spu_info "select
                            id,
                            spu_name,
                            category3_id,
                            tm_id
                          from spu_info
                          where 1=1"
}

import_favor_info(){
  import_data favor_info "select
                          id,
                          user_id,
                          sku_id,
                          spu_id,
                          is_cancel,
                          create_time,
                          cancel_time
                        from favor_info
                        where 1=1"
}

import_cart_info(){
  import_data cart_info "select
                        id,
                        user_id,
                        sku_id,
                        cart_price,
                        sku_num,
                        sku_name,
                        create_time,
                        operate_time,
                        is_ordered,
                        order_time,
                        source_type,
                        source_id
                      from cart_info
                      where 1=1"
}

import_coupon_info(){
  import_data coupon_info "select
                          id,
                          coupon_name,
                          coupon_type,
                          condition_amount,
                          condition_num,
                          activity_id,
                          benefit_amount,
                          benefit_discount,
                          create_time,
                          range_type,
                          spu_id,
                          tm_id,
                          category3_id,
                          limit_num,
                          operate_time,
                          expire_time
                        from coupon_info
                        where 1=1"
}

import_activity_info(){
  import_data activity_info "select
                              id,
                              activity_name,
                              activity_type,
                              start_time,
                              end_time,
                              create_time
                            from activity_info
                            where 1=1"
}

import_activity_rule(){
    import_data activity_rule "select
                                    id,
                                    activity_id,
                                    condition_amount,
                                    condition_num,
                                    benefit_amount,
                                    benefit_discount,
                                    benefit_level
                                from activity_rule
                                where 1=1"
}

import_base_dic(){
    import_data base_dic "select
                            dic_code,
                            dic_name,
                            parent_code,
                            create_time,
                            operate_time
                          from base_dic
                          where 1=1"
}

case $1 in
  "order_info")
     import_order_info
;;
  "base_category1")
     import_base_category1
;;
  "base_category2")
     import_base_category2
;;
  "base_category3")
     import_base_category3
;;
  "order_detail")
     import_order_detail
;;
  "sku_info")
     import_sku_info
;;
  "user_info")
     import_user_info
;;
  "payment_info")
     import_payment_info
;;
  "base_province")
     import_base_province
;;
  "base_region")
     import_base_region
;;
  "base_trademark")
     import_base_trademark
;;
  "activity_info")
      import_activity_info
;;
  "activity_order")
      import_activity_order
;;
  "cart_info")
      import_cart_info
;;
  "comment_info")
      import_comment_info
;;
  "coupon_info")
      import_coupon_info
;;
  "coupon_use")
      import_coupon_use
;;
  "favor_info")
      import_favor_info
;;
  "order_refund_info")
      import_order_refund_info
;;
  "order_status_log")
      import_order_status_log
;;
  "spu_info")
      import_spu_info
;;
  "activity_rule")
      import_activity_rule
;;
  "base_dic")
      import_base_dic
;;

"first")
   import_base_category1
   import_base_category2
   import_base_category3
   import_order_info
   import_order_detail
   import_sku_info
   import_user_info
   import_payment_info
   import_base_province
   import_base_region
   import_base_trademark
   import_activity_info
   import_activity_order
   import_cart_info
   import_comment_info
   import_coupon_use
   import_coupon_info
   import_favor_info
   import_order_refund_info
   import_order_status_log
   import_spu_info
   import_activity_rule
   import_base_dic
;;
"all")
   import_base_category1
   import_base_category2
   import_base_category3
   import_order_info
   import_order_detail
   import_sku_info
   import_user_info
   import_payment_info
   import_base_trademark
   import_activity_info
   import_activity_order
   import_cart_info
   import_comment_info
   import_coupon_use
   import_coupon_info
   import_favor_info
   import_order_refund_info
   import_order_status_log
   import_spu_info
   import_activity_rule
   import_base_dic
;;
esac

2. hdfs_to_ods_db.sh 脚本

#!/bin/bash

APP=gmall
hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
    do_date=$2
else 
    do_date=`date -d "-1 day" +%F`
fi

sql1=" 
load data inpath '/origin_data/$APP/db/order_info/$do_date' OVERWRITE into table ${APP}.ods_order_info partition(dt='$do_date');

load data inpath '/origin_data/$APP/db/order_detail/$do_date' OVERWRITE into table ${APP}.ods_order_detail partition(dt='$do_date');

load data inpath '/origin_data/$APP/db/sku_info/$do_date' OVERWRITE into table ${APP}.ods_sku_info partition(dt='$do_date');

load data inpath '/origin_data/$APP/db/user_info/$do_date' OVERWRITE into table ${APP}.ods_user_info partition(dt='$do_date');

load data inpath '/origin_data/$APP/db/payment_info/$do_date' OVERWRITE into table ${APP}.ods_payment_info partition(dt='$do_date');

load data inpath '/origin_data/$APP/db/base_category1/$do_date' OVERWRITE into table ${APP}.ods_base_category1 partition(dt='$do_date');

load data inpath '/origin_data/$APP/db/base_category2/$do_date' OVERWRITE into table ${APP}.ods_base_category2 partition(dt='$do_date');

load data inpath '/origin_data/$APP/db/base_category3/$do_date' OVERWRITE into table ${APP}.ods_base_category3 partition(dt='$do_date'); 

load data inpath '/origin_data/$APP/db/base_trademark/$do_date' OVERWRITE into table ${APP}.ods_base_trademark partition(dt='$do_date'); 

load data inpath '/origin_data/$APP/db/activity_info/$do_date' OVERWRITE into table ${APP}.ods_activity_info partition(dt='$do_date'); 

load data inpath '/origin_data/$APP/db/activity_order/$do_date' OVERWRITE into table ${APP}.ods_activity_order partition(dt='$do_date'); 

load data inpath '/origin_data/$APP/db/cart_info/$do_date' OVERWRITE into table ${APP}.ods_cart_info partition(dt='$do_date'); 

load data inpath '/origin_data/$APP/db/comment_info/$do_date' OVERWRITE into table ${APP}.ods_comment_info partition(dt='$do_date'); 

load data inpath '/origin_data/$APP/db/coupon_info/$do_date' OVERWRITE into table ${APP}.ods_coupon_info partition(dt='$do_date'); 

load data inpath '/origin_data/$APP/db/coupon_use/$do_date' OVERWRITE into table ${APP}.ods_coupon_use partition(dt='$do_date'); 

load data inpath '/origin_data/$APP/db/favor_info/$do_date' OVERWRITE into table ${APP}.ods_favor_info partition(dt='$do_date'); 

load data inpath '/origin_data/$APP/db/order_refund_info/$do_date' OVERWRITE into table ${APP}.ods_order_refund_info partition(dt='$do_date'); 

load data inpath '/origin_data/$APP/db/order_status_log/$do_date' OVERWRITE into table ${APP}.ods_order_status_log partition(dt='$do_date'); 

load data inpath '/origin_data/$APP/db/spu_info/$do_date' OVERWRITE into table ${APP}.ods_spu_info partition(dt='$do_date'); 

load data inpath '/origin_data/$APP/db/activity_rule/$do_date' OVERWRITE into table ${APP}.ods_activity_rule partition(dt='$do_date'); 

load data inpath '/origin_data/$APP/db/base_dic/$do_date' OVERWRITE into table ${APP}.ods_base_dic partition(dt='$do_date'); 
"

sql2=" 
load data inpath '/origin_data/$APP/db/base_province/$do_date' OVERWRITE into table ${APP}.ods_base_province;

load data inpath '/origin_data/$APP/db/base_region/$do_date' OVERWRITE into table ${APP}.ods_base_region;
"
case $1 in
"first"){
    $hive -e "$sql1$sql2"
};;
"all"){
    $hive -e "$sql1"
};;
esac

3. hdfs_to_ods_log.sh 脚本

#!/bin/bash

# 定义变量方便修改
APP=gmall
hive=/opt/module/hive/bin/hive
hadoop=/opt/module/hadoop-3.1.3/bin/hadoop

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
   do_date=$1
else 
   do_date=`date -d "-1 day" +%F`
fi 

echo ================== 日志日期为 $do_date ==================
sql="
load data inpath '/origin_data/$APP/log/topic_log/$do_date' into table ${APP}.ods_log partition(dt='$do_date');
"

$hive -e "$sql"

$hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/common/hadoop-lzo-0.4.20.jar com.hadoop.compression.lzo.DistributedLzoIndexer -Dmapreduce.job.queuename=default /warehouse/$APP/ods/ods_log/dt=$do_date

4. ods_to_dwd_db.sh 脚本

#!/bin/bash

APP=gmall
hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
    do_date=$2
else 
    do_date=`date -d "-1 day" +%F`
fi

sql1="
set mapreduce.job.queuename=default;
set hive.exec.dynamic.partition.mode=nonstrict;
SET hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;

insert overwrite table ${APP}.dwd_dim_sku_info partition(dt='$do_date')
select  
    sku.id,
    sku.spu_id,
    sku.price,
    sku.sku_name,
    sku.sku_desc,
    sku.weight,
    sku.tm_id,
    ob.tm_name,
    sku.category3_id,
    c2.id category2_id,
    c1.id category1_id,
    c3.name category3_name,
    c2.name category2_name,
    c1.name category1_name,
    spu.spu_name,
    sku.create_time
from
(
    select * from ${APP}.ods_sku_info where dt='$do_date'
)sku
join
(
    select * from ${APP}.ods_base_trademark where dt='$do_date'
)ob on sku.tm_id=ob.tm_id
join
(
    select * from ${APP}.ods_spu_info where dt='$do_date'
)spu on spu.id = sku.spu_id
join 
(
    select * from ${APP}.ods_base_category3 where dt='$do_date'
)c3 on sku.category3_id=c3.id
join 
(
    select * from ${APP}.ods_base_category2 where dt='$do_date'
)c2 on c3.category2_id=c2.id 
join 
(
    select * from ${APP}.ods_base_category1 where dt='$do_date'
)c1 on c2.category1_id=c1.id;


insert overwrite table ${APP}.dwd_dim_coupon_info partition(dt='$do_date')
select
    id,
    coupon_name,
    coupon_type,
    condition_amount,
    condition_num,
    activity_id,
    benefit_amount,
    benefit_discount,
    create_time,
    range_type,
    spu_id,
    tm_id,
    category3_id,
    limit_num,
    operate_time,
    expire_time
from ${APP}.ods_coupon_info
where dt='$do_date';


insert overwrite table ${APP}.dwd_dim_activity_info partition(dt='$do_date')
select
    id,
    activity_name,
    activity_type,
    start_time,
    end_time,
    create_time
from ${APP}.ods_activity_info 
where dt='$do_date';

insert overwrite table ${APP}.dwd_fact_order_detail partition(dt='$do_date')
select
    id,
    order_id,
    user_id,
    sku_id,
    sku_num,
    order_price,
    sku_num,
    create_time,
    province_id,
    source_type,
    source_id,
    original_amount_d,
    if(rn=1,final_total_amount-(sum_div_final_amount-final_amount_d),final_amount_d),
    if(rn=1,feight_fee-(sum_div_feight_fee-feight_fee_d),feight_fee_d),
    if(rn=1,benefit_reduce_amount-(sum_div_benefit_reduce_amount-benefit_reduce_amount_d),benefit_reduce_amount_d)
from
(
    select
        od.id,
        od.order_id,
        od.user_id,
        od.sku_id,
        od.sku_name,
        od.order_price,
        od.sku_num,
        od.create_time,
        oi.province_id,
        od.source_type,
        od.source_id,
        round(od.order_price*od.sku_num,2) original_amount_d,
        round(od.order_price*od.sku_num/oi.original_total_amount*oi.final_total_amount,2) final_amount_d,
        round(od.order_price*od.sku_num/oi.original_total_amount*oi.feight_fee,2) feight_fee_d,
        round(od.order_price*od.sku_num/oi.original_total_amount*oi.benefit_reduce_amount,2) benefit_reduce_amount_d,
        row_number() over(partition by od.order_id order by od.id desc) rn,
        oi.final_total_amount,
        oi.feight_fee,
        oi.benefit_reduce_amount,
        sum(round(od.order_price*od.sku_num/oi.original_total_amount*oi.final_total_amount,2)) over(partition by od.order_id) sum_div_final_amount,
        sum(round(od.order_price*od.sku_num/oi.original_total_amount*oi.feight_fee,2)) over(partition by od.order_id) sum_div_feight_fee,
        sum(round(od.order_price*od.sku_num/oi.original_total_amount*oi.benefit_reduce_amount,2)) over(partition by od.order_id) sum_div_benefit_reduce_amount
    from 
    (
        select * from ${APP}.ods_order_detail where dt='$do_date'
    ) od
    join 
    (
        select * from ${APP}.ods_order_info where dt='$do_date'
    ) oi
    on od.order_id=oi.id
)t1;

insert overwrite table ${APP}.dwd_fact_payment_info partition(dt='$do_date')
select
    pi.id,
    pi.out_trade_no,
    pi.order_id,
    pi.user_id,
    pi.alipay_trade_no,
    pi.total_amount,
    pi.subject,
    pi.payment_type,
    pi.payment_time,          
    oi.province_id
from
(
    select * from ${APP}.ods_payment_info where dt='$do_date'
)pi
join
(
    select id, province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on pi.order_id = oi.id;


insert overwrite table ${APP}.dwd_fact_order_refund_info partition(dt='$do_date')
select
    id,
    user_id,
    order_id,
    sku_id,
    refund_type,
    refund_num,
    refund_amount,
    refund_reason_type,
    create_time
from ${APP}.ods_order_refund_info
where dt='$do_date';


insert overwrite table ${APP}.dwd_fact_comment_info partition(dt='$do_date')
select
    id,
    user_id,
    sku_id,
    spu_id,
    order_id,
    appraise,
    create_time
from ${APP}.ods_comment_info
where dt='$do_date';


insert overwrite table ${APP}.dwd_fact_cart_info partition(dt='$do_date')
select
    id,
    user_id,
    sku_id,
    cart_price,
    sku_num,
    sku_name,
    create_time,
    operate_time,
    is_ordered,
    order_time,
    source_type,
    source_id
from ${APP}.ods_cart_info
where dt='$do_date';


insert overwrite table ${APP}.dwd_fact_favor_info partition(dt='$do_date')
select
    id,
    user_id,
    sku_id,
    spu_id,
    is_cancel,
    create_time,
    cancel_time
from ${APP}.ods_favor_info
where dt='$do_date';

insert overwrite table ${APP}.dwd_fact_coupon_use partition(dt)
select
    if(new.id is null,old.id,new.id),
    if(new.coupon_id is null,old.coupon_id,new.coupon_id),
    if(new.user_id is null,old.user_id,new.user_id),
    if(new.order_id is null,old.order_id,new.order_id),
    if(new.coupon_status is null,old.coupon_status,new.coupon_status),
    if(new.get_time is null,old.get_time,new.get_time),
    if(new.using_time is null,old.using_time,new.using_time),
    if(new.used_time is null,old.used_time,new.used_time),
    date_format(if(new.get_time is null,old.get_time,new.get_time),'yyyy-MM-dd')
from
(
    select
        id,
        coupon_id,
        user_id,
        order_id,
        coupon_status,
        get_time,
        using_time,
        used_time
    from ${APP}.dwd_fact_coupon_use
    where dt in
    (
        select
            date_format(get_time,'yyyy-MM-dd')
        from ${APP}.ods_coupon_use
        where dt='$do_date'
    )
)old
full outer join
(
    select
        id,
        coupon_id,
        user_id,
        order_id,
        coupon_status,
        get_time,
        using_time,
        used_time
    from ${APP}.ods_coupon_use
    where dt='$do_date'
)new
on old.id=new.id;


insert overwrite table ${APP}.dwd_fact_order_info partition(dt)
select
    if(new.id is null,old.id,new.id),
    if(new.order_status is null,old.order_status,new.order_status),
    if(new.user_id is null,old.user_id,new.user_id),
    if(new.out_trade_no is null,old.out_trade_no,new.out_trade_no),
    if(new.tms['1001'] is null,old.create_time,new.tms['1001']),--1001对应未支付状态
    if(new.tms['1002'] is null,old.payment_time,new.tms['1002']),
    if(new.tms['1003'] is null,old.cancel_time,new.tms['1003']),
    if(new.tms['1004'] is null,old.finish_time,new.tms['1004']),
    if(new.tms['1005'] is null,old.refund_time,new.tms['1005']),
    if(new.tms['1006'] is null,old.refund_finish_time,new.tms['1006']),
    if(new.province_id is null,old.province_id,new.province_id),
    if(new.activity_id is null,old.activity_id,new.activity_id),
    if(new.original_total_amount is null,old.original_total_amount,new.original_total_amount),
    if(new.benefit_reduce_amount is null,old.benefit_reduce_amount,new.benefit_reduce_amount),
    if(new.feight_fee is null,old.feight_fee,new.feight_fee),
    if(new.final_total_amount is null,old.final_total_amount,new.final_total_amount),
    date_format(if(new.tms['1001'] is null,old.create_time,new.tms['1001']),'yyyy-MM-dd')
from
(
    select
        id,
        order_status,
        user_id,
        out_trade_no,
        create_time,
        payment_time,
        cancel_time,
        finish_time,
        refund_time,
        refund_finish_time,
        province_id,
        activity_id,
        original_total_amount,
        benefit_reduce_amount,
        feight_fee,
        final_total_amount
    from ${APP}.dwd_fact_order_info
    where dt
    in
    (
        select
          date_format(create_time,'yyyy-MM-dd')
        from ${APP}.ods_order_info
        where dt='$do_date'
    )
)old
full outer join
(
    select
        info.id,
        info.order_status,
        info.user_id,
        info.out_trade_no,
        info.province_id,
        act.activity_id,
        log.tms,
        info.original_total_amount,
        info.benefit_reduce_amount,
        info.feight_fee,
        info.final_total_amount
    from
    (
        select
            order_id,
            str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') tms
        from ${APP}.ods_order_status_log
        where dt='$do_date'
        group by order_id
    )log
    join
    (
        select * from ${APP}.ods_order_info where dt='$do_date'
    )info
    on log.order_id=info.id
    left join
    (
        select * from ${APP}.ods_activity_order where dt='$do_date'
    )act
    on log.order_id=act.order_id
)new
on old.id=new.id;
"

sql2="
insert overwrite table ${APP}.dwd_dim_base_province
select 
    bp.id,
    bp.name,
    bp.area_code,
    bp.iso_code,
    bp.region_id,
    br.region_name
from ${APP}.ods_base_province bp
join ${APP}.ods_base_region br
on bp.region_id=br.id;
"

sql3="
insert overwrite table ${APP}.dwd_dim_user_info_his_tmp
select * from 
(
    select 
        id,
        name,
        birthday,
        gender,
        email,
        user_level,
        create_time,
        operate_time,
        '$do_date' start_date,
        '9999-99-99' end_date
    from ${APP}.ods_user_info where dt='$do_date'

    union all 
    select 
        uh.id,
        uh.name,
        uh.birthday,
        uh.gender,
        uh.email,
        uh.user_level,
        uh.create_time,
        uh.operate_time,
        uh.start_date,
        if(ui.id is not null  and uh.end_date='9999-99-99', date_add(ui.dt,-1), uh.end_date) end_date
    from ${APP}.dwd_dim_user_info_his uh left join 
    (
        select
            *
        from ${APP}.ods_user_info
        where dt='$do_date'
    ) ui on uh.id=ui.id
)his 
order by his.id, start_date;

insert overwrite table ${APP}.dwd_dim_user_info_his 
select * from ${APP}.dwd_dim_user_info_his_tmp;
"

case $1 in
"first"){
    $hive -e "$sql1$sql2"
};;
"all"){
    $hive -e "$sql1$sql3"
};;
esac

5. ods_to_dwd_log.sh 脚本

#!/bin/bash

hive=/opt/module/hive/bin/hive
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
    do_date=$1
else 
    do_date=`date -d "-1 day" +%F`
fi

sql="
SET mapreduce.job.queuename=default;
SET hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_start_log partition(dt='$do_date')
select 
    get_json_object(line,'$.common.ar'),
    get_json_object(line,'$.common.ba'),
    get_json_object(line,'$.common.ch'),
    get_json_object(line,'$.common.md'),
    get_json_object(line,'$.common.mid'),
    get_json_object(line,'$.common.os'),
    get_json_object(line,'$.common.uid'),
    get_json_object(line,'$.common.vc'),
    get_json_object(line,'$.start.entry'),
    get_json_object(line,'$.start.loading_time'),
    get_json_object(line,'$.start.open_ad_id'),
    get_json_object(line,'$.start.open_ad_ms'),
    get_json_object(line,'$.start.open_ad_skip_ms'),
    get_json_object(line,'$.ts')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.start') is not null;


insert overwrite table ${APP}.dwd_action_log partition(dt='$do_date')
select
    get_json_object(line,'$.common.ar'),
    get_json_object(line,'$.common.ba'),
    get_json_object(line,'$.common.ch'),
    get_json_object(line,'$.common.md'),
    get_json_object(line,'$.common.mid'),
    get_json_object(line,'$.common.os'),
    get_json_object(line,'$.common.uid'),
    get_json_object(line,'$.common.vc'),
    get_json_object(line,'$.page.during_time'),
    get_json_object(line,'$.page.item'),
    get_json_object(line,'$.page.item_type'),
    get_json_object(line,'$.page.last_page_id'),
    get_json_object(line,'$.page.page_id'),
    get_json_object(line,'$.page.sourceType'),
    get_json_object(action,'$.action_id'),
    get_json_object(action,'$.item'),
    get_json_object(action,'$.item_type'),
    get_json_object(action,'$.ts')
from ${APP}.ods_log lateral view ${APP}.explode_json_array(get_json_object(line,'$.actions')) tmp as action
where dt='$do_date'
and get_json_object(line,'$.actions') is not null;


insert overwrite table ${APP}.dwd_display_log partition(dt='$do_date')
select
    get_json_object(line,'$.common.ar'),
    get_json_object(line,'$.common.ba'),
    get_json_object(line,'$.common.ch'),
    get_json_object(line,'$.common.md'),
    get_json_object(line,'$.common.mid'),
    get_json_object(line,'$.common.os'),
    get_json_object(line,'$.common.uid'),
    get_json_object(line,'$.common.vc'),
    get_json_object(line,'$.page.during_time'),
    get_json_object(line,'$.page.item'),
    get_json_object(line,'$.page.item_type'),
    get_json_object(line,'$.page.last_page_id'),
    get_json_object(line,'$.page.page_id'),
    get_json_object(line,'$.page.sourceType'),
    get_json_object(line,'$.ts'),
    get_json_object(display,'$.displayType'),
    get_json_object(display,'$.item'),
    get_json_object(display,'$.item_type'),
    get_json_object(display,'$.order')
from ${APP}.ods_log lateral view ${APP}.explode_json_array(get_json_object(line,'$.displays')) tmp as display
where dt='$do_date'
and get_json_object(line,'$.displays') is not null;

insert overwrite table ${APP}.dwd_page_log partition(dt='$do_date')
select
    get_json_object(line,'$.common.ar'),
    get_json_object(line,'$.common.ba'),
    get_json_object(line,'$.common.ch'),
    get_json_object(line,'$.common.md'),
    get_json_object(line,'$.common.mid'),
    get_json_object(line,'$.common.os'),
    get_json_object(line,'$.common.uid'),
    get_json_object(line,'$.common.vc'),
    get_json_object(line,'$.page.during_time'),
    get_json_object(line,'$.page.item'),
    get_json_object(line,'$.page.item_type'),
    get_json_object(line,'$.page.last_page_id'),
    get_json_object(line,'$.page.page_id'),
    get_json_object(line,'$.page.sourceType'),
    get_json_object(line,'$.ts')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.page') is not null;


insert overwrite table ${APP}.dwd_error_log partition(dt='$do_date')
select
    get_json_object(line,'$.common.ar'),
    get_json_object(line,'$.common.ba'),
    get_json_object(line,'$.common.ch'),
    get_json_object(line,'$.common.md'),
    get_json_object(line,'$.common.mid'),
    get_json_object(line,'$.common.os'),
    get_json_object(line,'$.common.uid'),
    get_json_object(line,'$.common.vc'),
    get_json_object(line,'$.page.item'),
    get_json_object(line,'$.page.item_type'),
    get_json_object(line,'$.page.last_page_id'),
    get_json_object(line,'$.page.page_id'),
    get_json_object(line,'$.page.sourceType'),
    get_json_object(line,'$.start.entry'),
    get_json_object(line,'$.start.loading_time'),
    get_json_object(line,'$.start.open_ad_id'),
    get_json_object(line,'$.start.open_ad_ms'),
    get_json_object(line,'$.start.open_ad_skip_ms'),
    get_json_object(line,'$.actions'),
    get_json_object(line,'$.displays'),
    get_json_object(line,'$.ts'),
    get_json_object(line,'$.err.error_code'),
    get_json_object(line,'$.err.msg')
from ${APP}.ods_log 
where dt='$do_date'
and get_json_object(line,'$.err') is not null;
"
$hive -e "$sql"

6. dwd_to_dws.sh 脚本

#!/bin/bash

APP=gmall
hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
    do_date=$1
else
    do_date=`date -d "-1 day" +%F`
fi

sql="
set mapreduce.job.queuename=default;
with
tmp_start as
(
    select  
        mid_id,
        brand,
        model,
        count(*) login_count
    from ${APP}.dwd_start_log
    where dt='$do_date'
    group by mid_id,brand,model
),
tmp_page as
(
    select
        mid_id,
        brand,
        model,        
        collect_set(named_struct('page_id',page_id,'page_count',page_count)) page_stats
    from
    (
        select
            mid_id,
            brand,
            model,
            page_id,
            count(*) page_count
        from ${APP}.dwd_page_log
        where dt='$do_date'
        group by mid_id,brand,model,page_id
    )tmp
    group by mid_id,brand,model
)
insert overwrite table ${APP}.dws_uv_detail_daycount partition(dt='$do_date')
select
    nvl(tmp_start.mid_id,tmp_page.mid_id),
    nvl(tmp_start.brand,tmp_page.brand),
    nvl(tmp_start.model,tmp_page.model),
    tmp_start.login_count,
    tmp_page.page_stats
from tmp_start 
full outer join tmp_page
on tmp_start.mid_id=tmp_page.mid_id
and tmp_start.brand=tmp_page.brand
and tmp_start.model=tmp_page.model;


with
tmp_login as
(
    select
        user_id,
        count(*) login_count
    from ${APP}.dwd_start_log
    where dt='$do_date'
    and user_id is not null
    group by user_id
),
tmp_cart as
(
    select
        user_id,
        count(*) cart_count
    from ${APP}.dwd_action_log
    where dt='$do_date'
    and user_id is not null
    and action_id='cart_add'
    group by user_id
),tmp_order as
(
    select
        user_id,
        count(*) order_count,
        sum(final_total_amount) order_amount
    from ${APP}.dwd_fact_order_info
    where dt='$do_date'
    group by user_id
) ,
tmp_payment as
(
    select
        user_id,
        count(*) payment_count,
        sum(payment_amount) payment_amount
    from ${APP}.dwd_fact_payment_info
    where dt='$do_date'
    group by user_id
),
tmp_order_detail as
(
    select
        user_id,
        collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_count',order_count,'order_amount',order_amount)) order_stats
    from
    (
        select
            user_id,
            sku_id,
            sum(sku_num) sku_num,
            count(*) order_count,
            cast(sum(final_amount_d) as decimal(20,2)) order_amount
        from ${APP}.dwd_fact_order_detail
        where dt='$do_date'
        group by user_id,sku_id
    )tmp
    group by user_id
)

insert overwrite table ${APP}.dws_user_action_daycount partition(dt='$do_date')
select
    tmp_login.user_id,
    login_count,
    nvl(cart_count,0),
    nvl(order_count,0),
    nvl(order_amount,0.0),
    nvl(payment_count,0),
    nvl(payment_amount,0.0),
    order_stats
from tmp_login
left outer join tmp_cart on tmp_login.user_id=tmp_cart.user_id
left outer join tmp_order on tmp_login.user_id=tmp_order.user_id
left outer join tmp_payment on tmp_login.user_id=tmp_payment.user_id
left outer join tmp_order_detail on tmp_login.user_id=tmp_order_detail.user_id;

with 
tmp_order as
(
    select
        sku_id,
        count(*) order_count,
        sum(sku_num) order_num,
        sum(final_amount_d) order_amount
    from ${APP}.dwd_fact_order_detail
    where dt='$do_date'
    group by sku_id
),
tmp_payment as
(
    select
        sku_id,
        count(*) payment_count,
        sum(sku_num) payment_num,
        sum(final_amount_d) payment_amount
    from ${APP}.dwd_fact_order_detail
    where (dt='$do_date'
    or dt=date_add('$do_date',-1))
    and order_id in
    (
        select
            id
        from ${APP}.dwd_fact_order_info
        where (dt='$do_date'
        or dt=date_add('$do_date',-1))
        and date_format(payment_time,'yyyy-MM-dd')='$do_date'
    )
    group by sku_id
),
tmp_refund as
(
    select
        sku_id,
        count(*) refund_count,
        sum(refund_num) refund_num,
        sum(refund_amount) refund_amount
    from ${APP}.dwd_fact_order_refund_info
    where dt='$do_date'
    group by sku_id
),
tmp_cart as
(
    select
        item sku_id,
        count(*) cart_count
    from ${APP}.dwd_action_log
    where dt='$do_date'
    and user_id is not null
    and action_id='cart_add'
    group by item 
),tmp_favor as
(
    select
        item sku_id,
        count(*) favor_count
    from ${APP}.dwd_action_log
    where dt='$do_date'
    and user_id is not null
    and action_id='favor_add'
    group by item 
),
tmp_appraise as
(
select
    sku_id,
    sum(if(appraise='1201',1,0)) appraise_good_count,
    sum(if(appraise='1202',1,0)) appraise_mid_count,
    sum(if(appraise='1203',1,0)) appraise_bad_count,
    sum(if(appraise='1204',1,0)) appraise_default_count
from ${APP}.dwd_fact_comment_info
where dt='$do_date'
group by sku_id
)

insert overwrite table ${APP}.dws_sku_action_daycount partition(dt='$do_date')
select
    sku_id,
    sum(order_count),
    sum(order_num),
    sum(order_amount),
    sum(payment_count),
    sum(payment_num),
    sum(payment_amount),
    sum(refund_count),
    sum(refund_num),
    sum(refund_amount),
    sum(cart_count),
    sum(favor_count),
    sum(appraise_good_count),
    sum(appraise_mid_count),
    sum(appraise_bad_count),
    sum(appraise_default_count)
from
(
    select
        sku_id,
        order_count,
        order_num,
        order_amount,
        0 payment_count,
        0 payment_num,
        0 payment_amount,
        0 refund_count,
        0 refund_num,
        0 refund_amount,
        0 cart_count,
        0 favor_count,
        0 appraise_good_count,
        0 appraise_mid_count,
        0 appraise_bad_count,
        0 appraise_default_count
    from tmp_order
    union all
    select
        sku_id,
        0 order_count,
        0 order_num,
        0 order_amount,
        payment_count,
        payment_num,
        payment_amount,
        0 refund_count,
        0 refund_num,
        0 refund_amount,
        0 cart_count,
        0 favor_count,
        0 appraise_good_count,
        0 appraise_mid_count,
        0 appraise_bad_count,
        0 appraise_default_count
    from tmp_payment
    union all
    select
        sku_id,
        0 order_count,
        0 order_num,
        0 order_amount,
        0 payment_count,
        0 payment_num,
        0 payment_amount,
        refund_count,
        refund_num,
        refund_amount,
        0 cart_count,
        0 favor_count,
        0 appraise_good_count,
        0 appraise_mid_count,
        0 appraise_bad_count,
        0 appraise_default_count        
    from tmp_refund
    union all
    select
        sku_id,
        0 order_count,
        0 order_num,
        0 order_amount,
        0 payment_count,
        0 payment_num,
        0 payment_amount,
        0 refund_count,
        0 refund_num,
        0 refund_amount,
        cart_count,
        0 favor_count,
        0 appraise_good_count,
        0 appraise_mid_count,
        0 appraise_bad_count,
        0 appraise_default_count
    from tmp_cart
    union all
    select
        sku_id,
        0 order_count,
        0 order_num,
        0 order_amount,
        0 payment_count,
        0 payment_num,
        0 payment_amount,
        0 refund_count,
        0 refund_num,
        0 refund_amount,
        0 cart_count,
        favor_count,
        0 appraise_good_count,
        0 appraise_mid_count,
        0 appraise_bad_count,
        0 appraise_default_count
    from tmp_favor
    union all
    select
        sku_id,
        0 order_count,
        0 order_num,
        0 order_amount,
        0 payment_count,
        0 payment_num,
        0 payment_amount,
        0 refund_count,
        0 refund_num,
        0 refund_amount,
        0 cart_count,
        0 favor_count,
        appraise_good_count,
        appraise_mid_count,
        appraise_bad_count,
        appraise_default_count
    from tmp_appraise
)tmp
group by sku_id;

with 
tmp_login as
(
    select
        area_code,
        count(*) login_count
    from ${APP}.dwd_start_log
    where dt='$do_date'
    group by area_code
),
tmp_op as
(
    select
        province_id,
        sum(if(date_format(create_time,'yyyy-MM-dd')='$do_date',1,0)) order_count,
        sum(if(date_format(create_time,'yyyy-MM-dd')='$do_date',final_total_amount,0)) order_amount,
        sum(if(date_format(payment_time,'yyyy-MM-dd')='$do_date',1,0)) payment_count,
        sum(if(date_format(payment_time,'yyyy-MM-dd')='$do_date',final_total_amount,0)) payment_amount
    from ${APP}.dwd_fact_order_info
    where (dt='$do_date' or dt=date_add('$do_date',-1))
    group by province_id
)
insert overwrite table ${APP}.dws_area_stats_daycount partition(dt='$do_date')
select
    pro.id,
    pro.province_name,
    pro.area_code,
    pro.iso_code,
    pro.region_id,
    pro.region_name,
    nvl(tmp_login.login_count,0),
    nvl(tmp_op.order_count,0),
    nvl(tmp_op.order_amount,0.0),
    nvl(tmp_op.payment_count,0),
    nvl(tmp_op.payment_amount,0.0)
from ${APP}.dwd_dim_base_province pro
left join tmp_login on pro.area_code=tmp_login.area_code
left join tmp_op on pro.id=tmp_op.province_id;


with
tmp_op as
(
    select
        activity_id,
        sum(if(date_format(create_time,'yyyy-MM-dd')='$do_date',1,0)) order_count,
        sum(if(date_format(create_time,'yyyy-MM-dd')='$do_date',final_total_amount,0)) order_amount,
        sum(if(date_format(payment_time,'yyyy-MM-dd')='$do_date',1,0)) payment_count,
        sum(if(date_format(payment_time,'yyyy-MM-dd')='$do_date',final_total_amount,0)) payment_amount
    from ${APP}.dwd_fact_order_info
    where (dt='$do_date' or dt=date_add('$do_date',-1))
    and activity_id is not null
    group by activity_id
),
tmp_display as
(
    select
        item activity_id,
        count(*) display_count
    from ${APP}.dwd_display_log
    where dt='$do_date'
    and item_type='activity_id'
    group by item
),
tmp_activity as
(
    select
        *
    from ${APP}.dwd_dim_activity_info
    where dt='$do_date'
)
insert overwrite table ${APP}.dws_activity_info_daycount partition(dt='$do_date')
select
    nvl(tmp_op.activity_id,tmp_display.activity_id),
    tmp_activity.activity_name,
    tmp_activity.activity_type,
    tmp_activity.start_time,
    tmp_activity.end_time,
    tmp_activity.create_time,
    tmp_display.display_count,
    tmp_op.order_count,
    tmp_op.order_amount,
    tmp_op.payment_count,
    tmp_op.payment_amount
from tmp_op
full outer join tmp_display on tmp_op.activity_id=tmp_display.activity_id
left join tmp_activity on nvl(tmp_op.activity_id,tmp_display.activity_id)=tmp_activity.id;
"

$hive -e "$sql"

7. dws_to_dwt.sh 脚本

#!/bin/bash

APP=gmall
hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
    do_date=$1
else 
    do_date=`date -d "-1 day" +%F`
fi

sql="
set mapreduce.job.queuename=default;
insert overwrite table ${APP}.dwt_uv_topic
select
    nvl(new.mid_id,old.mid_id),
    nvl(new.model,old.model),
    nvl(new.brand,old.brand),
    if(old.mid_id is null,'$do_date',old.login_date_first),
    if(new.mid_id is not null,'$do_date',old.login_date_last),
    if(new.mid_id is not null, new.login_count,0),
    nvl(old.login_count,0)+if(new.login_count>0,1,0)
from
(
    select
        *
    from ${APP}.dwt_uv_topic
)old
full outer join
(
    select
        *
    from ${APP}.dws_uv_detail_daycount
    where dt='$do_date'
)new
on old.mid_id=new.mid_id;

insert overwrite table ${APP}.dwt_user_topic
select
    nvl(new.user_id,old.user_id),
    if(old.login_date_first is null and new.login_count>0,'$do_date',old.login_date_first),
    if(new.login_count>0,'$do_date',old.login_date_last),
    nvl(old.login_count,0)+if(new.login_count>0,1,0),
    nvl(new.login_last_30d_count,0),
    if(old.order_date_first is null and new.order_count>0,'$do_date',old.order_date_first),
    if(new.order_count>0,'$do_date',old.order_date_last),
    nvl(old.order_count,0)+nvl(new.order_count,0),
    nvl(old.order_amount,0)+nvl(new.order_amount,0),
    nvl(new.order_last_30d_count,0),
    nvl(new.order_last_30d_amount,0),
    if(old.payment_date_first is null and new.payment_count>0,'$do_date',old.payment_date_first),
    if(new.payment_count>0,'$do_date',old.payment_date_last),
    nvl(old.payment_count,0)+nvl(new.payment_count,0),
    nvl(old.payment_amount,0)+nvl(new.payment_amount,0),
    nvl(new.payment_last_30d_count,0),
    nvl(new.payment_last_30d_amount,0)
from
${APP}.dwt_user_topic old
full outer join
(
    select
        user_id,
        sum(if(dt='$do_date',login_count,0)) login_count,
        sum(if(dt='$do_date',order_count,0)) order_count,
        sum(if(dt='$do_date',order_amount,0)) order_amount,
        sum(if(dt='$do_date',payment_count,0)) payment_count,
        sum(if(dt='$do_date',payment_amount,0)) payment_amount,
        sum(if(login_count>0,1,0)) login_last_30d_count,
        sum(order_count) order_last_30d_count,
        sum(order_amount) order_last_30d_amount,
        sum(payment_count) payment_last_30d_count,
        sum(payment_amount) payment_last_30d_amount
    from ${APP}.dws_user_action_daycount
    where dt>=date_add( '$do_date',-30)
    group by user_id
)new
on old.user_id=new.user_id;

insert overwrite table ${APP}.dwt_sku_topic
select 
    nvl(new.sku_id,old.sku_id),
    sku_info.spu_id,
    nvl(new.order_count30,0),
    nvl(new.order_num30,0),
    nvl(new.order_amount30,0),
    nvl(old.order_count,0) + nvl(new.order_count,0),
    nvl(old.order_num,0) + nvl(new.order_num,0),
    nvl(old.order_amount,0) + nvl(new.order_amount,0),
    nvl(new.payment_count30,0),
    nvl(new.payment_num30,0),
    nvl(new.payment_amount30,0),
    nvl(old.payment_count,0) + nvl(new.payment_count,0),
    nvl(old.payment_num,0) + nvl(new.payment_num,0),
    nvl(old.payment_amount,0) + nvl(new.payment_amount,0),
    nvl(new.refund_count30,0),
    nvl(new.refund_num30,0),
    nvl(new.refund_amount30,0),
    nvl(old.refund_count,0) + nvl(new.refund_count,0),
    nvl(old.refund_num,0) + nvl(new.refund_num,0),
    nvl(old.refund_amount,0) + nvl(new.refund_amount,0),
    nvl(new.cart_count30,0),
    nvl(old.cart_count,0) + nvl(new.cart_count,0),
    nvl(new.favor_count30,0),
    nvl(old.favor_count,0) + nvl(new.favor_count,0),
    nvl(new.appraise_good_count30,0),
    nvl(new.appraise_mid_count30,0),
    nvl(new.appraise_bad_count30,0),
    nvl(new.appraise_default_count30,0)  ,
    nvl(old.appraise_good_count,0) + nvl(new.appraise_good_count,0),
    nvl(old.appraise_mid_count,0) + nvl(new.appraise_mid_count,0),
    nvl(old.appraise_bad_count,0) + nvl(new.appraise_bad_count,0),
    nvl(old.appraise_default_count,0) + nvl(new.appraise_default_count,0) 
from 
(
    select
        sku_id,
        spu_id,
        order_last_30d_count,
        order_last_30d_num,
        order_last_30d_amount,
        order_count,
        order_num,
        order_amount  ,
        payment_last_30d_count,
        payment_last_30d_num,
        payment_last_30d_amount,
        payment_count,
        payment_num,
        payment_amount,
        refund_last_30d_count,
        refund_last_30d_num,
        refund_last_30d_amount,
        refund_count,
        refund_num,
        refund_amount,
        cart_last_30d_count,
        cart_count,
        favor_last_30d_count,
        favor_count,
        appraise_last_30d_good_count,
        appraise_last_30d_mid_count,
        appraise_last_30d_bad_count,
        appraise_last_30d_default_count,
        appraise_good_count,
        appraise_mid_count,
        appraise_bad_count,
        appraise_default_count 
    from ${APP}.dwt_sku_topic
)old
full outer join 
(
    select 
        sku_id,
        sum(if(dt='$do_date', order_count,0 )) order_count,
        sum(if(dt='$do_date',order_num ,0 ))  order_num, 
        sum(if(dt='$do_date',order_amount,0 )) order_amount ,
        sum(if(dt='$do_date',payment_count,0 )) payment_count,
        sum(if(dt='$do_date',payment_num,0 )) payment_num,
        sum(if(dt='$do_date',payment_amount,0 )) payment_amount,
        sum(if(dt='$do_date',refund_count,0 )) refund_count,
        sum(if(dt='$do_date',refund_num,0 )) refund_num,
        sum(if(dt='$do_date',refund_amount,0 )) refund_amount,  
        sum(if(dt='$do_date',cart_count,0 )) cart_count,
        sum(if(dt='$do_date',favor_count,0 )) favor_count,
        sum(if(dt='$do_date',appraise_good_count,0 )) appraise_good_count,  
        sum(if(dt='$do_date',appraise_mid_count,0 ) ) appraise_mid_count ,
        sum(if(dt='$do_date',appraise_bad_count,0 )) appraise_bad_count,  
        sum(if(dt='$do_date',appraise_default_count,0 )) appraise_default_count,
        sum(order_count) order_count30 ,
        sum(order_num) order_num30,
        sum(order_amount) order_amount30,
        sum(payment_count) payment_count30,
        sum(payment_num) payment_num30,
        sum(payment_amount) payment_amount30,
        sum(refund_count) refund_count30,
        sum(refund_num) refund_num30,
        sum(refund_amount) refund_amount30,
        sum(cart_count) cart_count30,
        sum(favor_count) favor_count30,
        sum(appraise_good_count) appraise_good_count30,
        sum(appraise_mid_count) appraise_mid_count30,
        sum(appraise_bad_count) appraise_bad_count30,
        sum(appraise_default_count) appraise_default_count30 
    from ${APP}.dws_sku_action_daycount
    where dt >= date_add ('$do_date', -30)
    group by sku_id    
)new 
on new.sku_id = old.sku_id
left join 
(select * from ${APP}.dwd_dim_sku_info where dt='$do_date') sku_info
on nvl(new.sku_id,old.sku_id)= sku_info.id;

insert overwrite table ${APP}.dwt_activity_topic
select
    nvl(new.id,old.id),
    nvl(new.activity_name,old.activity_name),
    nvl(new.activity_type,old.activity_type),
    nvl(new.start_time,old.start_time),
    nvl(new.end_time,old.end_time),
    nvl(new.create_time,old.create_time),
    nvl(new.display_count,0),
    nvl(new.order_count,0),
    nvl(new.order_amount,0.0),
    nvl(new.payment_count,0),
    nvl(new.payment_amount,0.0),
    nvl(new.display_count,0)+nvl(old.display_count,0),
    nvl(new.order_count,0)+nvl(old.order_count,0),
    nvl(new.order_amount,0.0)+nvl(old.order_amount,0.0),
    nvl(new.payment_count,0)+nvl(old.payment_count,0),
    nvl(new.payment_amount,0.0)+nvl(old.payment_amount,0.0)
from
(
    select
        *
    from ${APP}.dwt_activity_topic
)old
full outer join
(
    select
        *
    from ${APP}.dws_activity_info_daycount
    where dt='$do_date'
)new
on old.id=new.id;

insert overwrite table ${APP}.dwt_area_topic
select
    nvl(old.id,new.id),
    nvl(old.province_name,new.province_name),
    nvl(old.area_code,new.area_code),
    nvl(old.iso_code,new.iso_code),
    nvl(old.region_id,new.region_id),
    nvl(old.region_name,new.region_name),
    nvl(new.login_day_count,0),
    nvl(new.login_last_30d_count,0),
    nvl(new.order_day_count,0),
    nvl(new.order_day_amount,0.0),
    nvl(new.order_last_30d_count,0),
    nvl(new.order_last_30d_amount,0.0),
    nvl(new.payment_day_count,0),
    nvl(new.payment_day_amount,0.0),
    nvl(new.payment_last_30d_count,0),
    nvl(new.payment_last_30d_amount,0.0)
from 
(
    select
        *
    from ${APP}.dwt_area_topic
)old
full outer join
(
    select
        id,
        province_name,
        area_code,
        iso_code,
        region_id,
        region_name,
        sum(if(dt='$do_date',login_count,0)) login_day_count,
        sum(if(dt='$do_date',order_count,0)) order_day_count,
        sum(if(dt='$do_date',order_amount,0.0)) order_day_amount,
        sum(if(dt='$do_date',payment_count,0)) payment_day_count,
        sum(if(dt='$do_date',payment_amount,0.0)) payment_day_amount,
        sum(login_count) login_last_30d_count,
        sum(order_count) order_last_30d_count,
        sum(order_amount) order_last_30d_amount,
        sum(payment_count) payment_last_30d_count,
        sum(payment_amount) payment_last_30d_amount
    from ${APP}.dws_area_stats_daycount
    where dt>=date_add('$do_date',-30)
    group by id,province_name,area_code,iso_code,region_id,region_name
)new
on old.id=new.id;
"

$hive -e "$sql"

8. dwt_to_ads.sh 脚本

#!/bin/bash

hive=/opt/module/hive/bin/hive
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
    do_date=$1
else 
    do_date=`date -d "-1 day" +%F`
fi

sql="
set mapreduce.job.queuename=default;
insert into table ${APP}.ads_uv_count 
select  
    '$do_date' dt,
    daycount.ct,
    wkcount.ct,
    mncount.ct,
    if(date_add(next_day('$do_date','MO'),-1)='$do_date','Y','N') ,
    if(last_day('$do_date')='$do_date','Y','N') 
from 
(
    select  
        '$do_date' dt,
        count(*) ct
    from ${APP}.dwt_uv_topic
    where login_date_last='$do_date'  
)daycount join 
( 
    select  
        '$do_date' dt,
        count (*) ct
    from ${APP}.dwt_uv_topic
    where login_date_last>=date_add(next_day('$do_date','MO'),-7) 
    and login_date_last<= date_add(next_day('$do_date','MO'),-1) 
) wkcount on daycount.dt=wkcount.dt
join 
( 
    select  
        '$do_date' dt,
        count (*) ct
    from ${APP}.dwt_uv_topic
    where date_format(login_date_last,'yyyy-MM')=date_format('$do_date','yyyy-MM')  
)mncount on daycount.dt=mncount.dt;

insert into table ${APP}.ads_new_mid_count 
select
    login_date_first,
    count(*)
from ${APP}.dwt_uv_topic
where login_date_first='$do_date'
group by login_date_first;

insert into table ${APP}.ads_silent_count
select
    '$do_date',
    count(*) 
from ${APP}.dwt_uv_topic
where login_date_first=login_date_last
and login_date_last<=date_add('$do_date',-7);


insert into table ${APP}.ads_back_count
select
'$do_date',
concat(date_add(next_day('$do_date','MO'),-7),'_', date_add(next_day('$do_date','MO'),-1)),
    count(*)
from
(
    select
        mid_id
    from ${APP}.dwt_uv_topic
    where login_date_last>=date_add(next_day('$do_date','MO'),-7) 
    and login_date_last<= date_add(next_day('$do_date','MO'),-1)
    and login_date_first<date_add(next_day('$do_date','MO'),-7)
)current_wk
left join
(
    select
        mid_id
    from ${APP}.dws_uv_detail_daycount
    where dt>=date_add(next_day('$do_date','MO'),-7*2) 
    and dt<= date_add(next_day('$do_date','MO'),-7-1) 
    group by mid_id
)last_wk
on current_wk.mid_id=last_wk.mid_id
where last_wk.mid_id is null;

insert into table ${APP}.ads_wastage_count
select
     '$do_date',
     count(*)
from 
(
    select 
        mid_id
    from ${APP}.dwt_uv_topic
    where login_date_last<=date_add('$do_date',-7)
    group by mid_id
)t1;

insert into table ${APP}.ads_user_retention_day_rate
select
    '$do_date',--统计日期
    date_add('$do_date',-1),--新增日期
    1,--留存天数
    sum(if(login_date_first=date_add('$do_date',-1) and login_date_last='$do_date',1,0)),--$do_date的1日留存数
    sum(if(login_date_first=date_add('$do_date',-1),1,0)),--$do_date新增
    sum(if(login_date_first=date_add('$do_date',-1) and login_date_last='$do_date',1,0))/sum(if(login_date_first=date_add('$do_date',-1),1,0))*100
from ${APP}.dwt_uv_topic

union all

select
    '$do_date',--统计日期
    date_add('$do_date',-2),--新增日期
    2,--留存天数
    sum(if(login_date_first=date_add('$do_date',-2) and login_date_last='$do_date',1,0)),--$do_date的2日留存数
    sum(if(login_date_first=date_add('$do_date',-2),1,0)),--$do_date新增
    sum(if(login_date_first=date_add('$do_date',-2) and login_date_last='$do_date',1,0))/sum(if(login_date_first=date_add('$do_date',-2),1,0))*100
from ${APP}.dwt_uv_topic

union all

select
    '$do_date',--统计日期
    date_add('$do_date',-3),--新增日期
    3,--留存天数
    sum(if(login_date_first=date_add('$do_date',-3) and login_date_last='$do_date',1,0)),--$do_date的3日留存数
    sum(if(login_date_first=date_add('$do_date',-3),1,0)),--$do_date新增
    sum(if(login_date_first=date_add('$do_date',-3) and login_date_last='$do_date',1,0))/sum(if(login_date_first=date_add('$do_date',-3),1,0))*100
from ${APP}.dwt_uv_topic;


insert into table ${APP}.ads_continuity_wk_count
select
    '$do_date',
    concat(date_add(next_day('$do_date','MO'),-7*3),'_',date_add(next_day('$do_date','MO'),-1)),
    count(*)
from
(
    select
        mid_id
    from
    (
        select
            mid_id
        from ${APP}.dws_uv_detail_daycount
        where dt>=date_add(next_day('$do_date','monday'),-7)
        and dt<=date_add(next_day('$do_date','monday'),-1)
        group by mid_id

        union all

        select
            mid_id
        from ${APP}.dws_uv_detail_daycount
        where dt>=date_add(next_day('$do_date','monday'),-7*2)
        and dt<=date_add(next_day('$do_date','monday'),-7-1)
        group by mid_id

        union all

        select
            mid_id
        from ${APP}.dws_uv_detail_daycount
        where dt>=date_add(next_day('$do_date','monday'),-7*3)
        and dt<=date_add(next_day('$do_date','monday'),-7*2-1)
        group by mid_id
    )t1
    group by mid_id
    having count(*)=3
)t2;


insert into table ${APP}.ads_continuity_uv_count
select
    '$do_date',
    concat(date_add('$do_date',-6),'_','$do_date'),
    count(*)
from
(
    select mid_id
    from
    (
        select mid_id      
        from
        (
            select 
                mid_id,
                date_sub(dt,rank) date_dif
            from
            (
                select 
                    mid_id,
                    dt,
                    rank() over(partition by mid_id order by dt) rank
                from ${APP}.dws_uv_detail_daycount
                where dt>=date_add('$do_date',-6) and dt<='$do_date'
            )t1
        )t2 
        group by mid_id,date_dif
        having count(*)>=3
    )t3 
    group by mid_id
)t4;


insert into table ${APP}.ads_user_topic
select
    '$do_date',
    sum(if(login_date_last='$do_date',1,0)),
    sum(if(login_date_first='$do_date',1,0)),
    sum(if(payment_date_first='$do_date',1,0)),
    sum(if(payment_count>0,1,0)),
    count(*),
    sum(if(login_date_last='$do_date',1,0))/count(*),
    sum(if(payment_count>0,1,0))/count(*),
    sum(if(login_date_first='$do_date',1,0))/sum(if(login_date_last='$do_date',1,0))
from ${APP}.dwt_user_topic;

with
tmp_uv as
(
    select
        '$do_date' dt,
        sum(if(array_contains(pages,'home'),1,0)) home_count,
        sum(if(array_contains(pages,'good_detail'),1,0)) good_detail_count
    from
    (
        select
            mid_id,
            collect_set(page_id) pages
        from ${APP}.dwd_page_log
        where dt='$do_date'
        and page_id in ('home','good_detail')
        group by mid_id
    )tmp
),
tmp_cop as
(
    select 
        '$do_date' dt,
        sum(if(cart_count>0,1,0)) cart_count,
        sum(if(order_count>0,1,0)) order_count,
        sum(if(payment_count>0,1,0)) payment_count
    from ${APP}.dws_user_action_daycount
    where dt='$do_date'
)
insert into table ${APP}.ads_user_action_convert_day
select
    tmp_uv.dt,
    tmp_uv.home_count,
    tmp_uv.good_detail_count,
    tmp_uv.good_detail_count/tmp_uv.home_count*100,
    tmp_cop.cart_count,
    tmp_cop.cart_count/tmp_uv.good_detail_count*100,
    tmp_cop.order_count,
    tmp_cop.order_count/tmp_cop.cart_count*100,
    tmp_cop.payment_count,
    tmp_cop.payment_count/tmp_cop.order_count*100
from tmp_uv
join tmp_cop
on tmp_uv.dt=tmp_cop.dt;

insert into table ${APP}.ads_product_info
select
    '$do_date' dt,
    sku_num,
    spu_num
from
(
    select
        '$do_date' dt,
        count(*) sku_num
    from
        ${APP}.dwt_sku_topic
) tmp_sku_num
join
(
    select
        '$do_date' dt,
        count(*) spu_num
    from
    (
        select
            spu_id
        from
            ${APP}.dwt_sku_topic
        group by
            spu_id
    ) tmp_spu_id
) tmp_spu_num
on
    tmp_sku_num.dt=tmp_spu_num.dt;


insert into table ${APP}.ads_product_sale_topN
select
    '$do_date' dt,
    sku_id,
    payment_amount
from
    ${APP}.dws_sku_action_daycount
where
    dt='$do_date'
order by payment_amount desc
limit 10;

insert into table ${APP}.ads_product_favor_topN
select
    '$do_date' dt,
    sku_id,
    favor_count
from
    ${APP}.dws_sku_action_daycount
where
    dt='$do_date'
order by favor_count desc
limit 10;

insert into table ${APP}.ads_product_cart_topN
select
    '$do_date' dt,
    sku_id,
    cart_count
from
    ${APP}.dws_sku_action_daycount
where
    dt='$do_date'
order by cart_count desc
limit 10;


insert into table ${APP}.ads_product_refund_topN
select
    '$do_date',
    sku_id,
    refund_last_30d_count/payment_last_30d_count*100 refund_ratio
from ${APP}.dwt_sku_topic
order by refund_ratio desc
limit 10;


insert into table ${APP}.ads_appraise_bad_topN
select
    '$do_date' dt,
    sku_id,
appraise_bad_count/(appraise_good_count+appraise_mid_count+appraise_bad_count+appraise_default_count) appraise_bad_ratio
from
    ${APP}.dws_sku_action_daycount
where
    dt='$do_date'
order by appraise_bad_ratio desc
limit 10;


insert into table ${APP}.ads_order_daycount
select
    '$do_date',
    sum(order_count),
    sum(order_amount),
    sum(if(order_count>0,1,0))
from ${APP}.dws_user_action_daycount
where dt='$do_date';


insert into table ${APP}.ads_payment_daycount
select
    tmp_payment.dt,
    tmp_payment.payment_count,
    tmp_payment.payment_amount,
    tmp_payment.payment_user_count,
    tmp_skucount.payment_sku_count,
    tmp_time.payment_avg_time
from
(
    select
        '$do_date' dt,
        sum(payment_count) payment_count,
        sum(payment_amount) payment_amount,
        sum(if(payment_count>0,1,0)) payment_user_count
    from ${APP}.dws_user_action_daycount
    where dt='$do_date'
)tmp_payment
join
(
    select
        '$do_date' dt,
        sum(if(payment_count>0,1,0)) payment_sku_count 
    from ${APP}.dws_sku_action_daycount
    where dt='$do_date'
)tmp_skucount on tmp_payment.dt=tmp_skucount.dt
join
(
    select
        '$do_date' dt,
        sum(unix_timestamp(payment_time)-unix_timestamp(create_time))/count(*)/60 payment_avg_time
    from ${APP}.dwd_fact_order_info
    where dt='$do_date'
    and payment_time is not null
)tmp_time on tmp_payment.dt=tmp_time.dt;


with 
tmp_order as
(
    select
        user_id,
        order_stats_struct.sku_id sku_id,
        order_stats_struct.order_count order_count
    from ${APP}.dws_user_action_daycount lateral view explode(order_detail_stats) tmp as order_stats_struct
    where date_format(dt,'yyyy-MM')=date_format('$do_date','yyyy-MM')
),
tmp_sku as
(
    select
        id,
        tm_id,
        category1_id,
        category1_name
    from ${APP}.dwd_dim_sku_info
    where dt='$do_date'
)
insert into table ${APP}.ads_sale_tm_category1_stat_mn
select
    tm_id,
    category1_id,
    category1_name,
    sum(if(order_count>=1,1,0)) buycount,
    sum(if(order_count>=2,1,0)) buyTwiceLast,
    sum(if(order_count>=2,1,0))/sum( if(order_count>=1,1,0)) buyTwiceLastRatio,
    sum(if(order_count>=3,1,0))  buy3timeLast  ,
    sum(if(order_count>=3,1,0))/sum( if(order_count>=1,1,0)) buy3timeLastRatio ,
    date_format('$do_date' ,'yyyy-MM') stat_mn,
    '$do_date' stat_date
from
(
    select 
        tmp_order.user_id,
        tmp_sku.category1_id,
        tmp_sku.category1_name,
        tmp_sku.tm_id,
        sum(order_count) order_count
    from tmp_order
    join tmp_sku
    on tmp_order.sku_id=tmp_sku.id
    group by tmp_order.user_id,tmp_sku.category1_id,tmp_sku.category1_name,tmp_sku.tm_id
)tmp
group by tm_id, category1_id, category1_name;


insert into table ${APP}.ads_area_topic
select
    '$do_date',
    id,
    province_name,
    area_code,
    iso_code,
    region_id,
    region_name,
    login_day_count,
    order_day_count,
    order_day_amount,
    payment_day_count,
    payment_day_amount
from ${APP}.dwt_area_topic;

"

$hive -e "$sql"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/462401.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《JavaEE初阶》HTTP协议和HTTPS

《JavaEE初阶》HTTP协议和HTTPS 文章目录 《JavaEE初阶》HTTP协议和HTTPSHTTP协议是应用层协议:使用Fiddler抓取HTTP请求和响应:Fiddler的下载和基本使用:Fiddler的中间代理人身份:其他抓包工具: 先简单认识HTTP请求与HTTP响应:HTTP请求:HTTP响应: HTTP请求详解:首行&#xff1…

分享10个精美可视化模板,解决95%的大屏需求!

前段时间和朋友一起喝茶&#xff0c;我吐槽着excel表格做报表的繁琐&#xff0c;他惊讶的问我竟然不知道大屏模板这种东西&#xff0c;说是直接套用数据就可以&#xff0c;我震惊的同时吃下了这个安利。 回来之后&#xff0c;我好好研究了一番这个叫可视化大屏的“新鲜玩意儿”…

模块化编程原理示意图--CommonJS 模块编程--ES6 模块编程思路分析/图解--三种导出形式--全部代码示例

目录 模块化编程 基本介绍 模块化编程原理示意图 模块化编程分类 CommonJS 模块编程 介绍 应用实例 1. 需求说明 2. 思路分析/图解 3. 代码实现 function.js use.html use.js ES6 模块编程 介绍 需求说明 思路分析/图解 代码实现 common.js use_common.js …

MySQL入门到精通——进阶篇(基础篇——进阶篇——运维篇)本文以MySQL8.0版本以上为例

文章目录 前言MySQL——进阶篇一、存储引擎1.存储引擎-MySQL体系结构2.存储引擎-简介3.存储引擎-InnoDB介绍4.存储引擎-MyISAM和Memory5.存储引擎-选择 二、索引1.索引-概述2.索引-结构2.1.索引-结构-介绍2.2.索引-结构-Btree2.3.索引-结构-Btree2.4.索引-结构-hash 3.索引-分类…

【Java-02】深入理解关键字和代码块

1 关键字 2 代码块 1 Java中的关键字 1.1 static关键字 static关键字 : 静态的意思 , 可以修饰变量 , 也可以修饰方法 , 被static修饰的成员 , 我们叫做静态成员 static特点 : 静态成员被所类的所有对象共享随着类的加载而加载 , 优先于对象存在可以通过对象调用 , 也可以通…

学习系统编程No.23【信号实战】

引言&#xff1a; 北京时间&#xff1a;2023/4/23&#xff0c;最近学习状态不怎么好&#xff0c;总是犯困&#xff0c;没精力的感觉&#xff0c;可能是病没有好彻底的原因&#xff0c;也可能是我内心因为生病而认为摆烂理所应当&#xff0c;反正最后导致摆烂&#xff0c;课现在…

JetpackCompose从入门到实战学习笔记14——Coli的简单使用

JetpackCompose从入门到实战学习笔记14——Coli的简单使用 1.简介&#xff1a; Coil 是一个 Android官方出的配合Jetpack的图片加载库&#xff0c;通过 Kotlin 协程的方式加载图片。 优点如下&#xff1a; 更快: Coil 在性能上有很多优化&#xff0c;包括内存缓存和磁盘缓存…

体验了多款国产类ChatGPT产品后,我选择了道合顺的【ChatIC】

&#x1f482;作者简介&#xff1a; THUNDER王&#xff0c;一名热爱财税和SAP ABAP编程以及热爱分享的博主。目前于江西师范大学本科在读&#xff0c;同时任汉硕云&#xff08;广东&#xff09;科技有限公司ABAP开发顾问。在学习工作中&#xff0c;我通常使用偏后端的开发语言A…

springboot实用配置

springboot实用配置 &#xff08;一&#xff09;打包与运行&#xff08;二&#xff09;配置高级1.临时属性设置2.配置文件分类3.自定义配置文件 &#xff08;三&#xff09;多环境开发&#xff08;四&#xff09;日志1.日志基础2.日志输出格式控制3.日志文件 &#xff08;一&am…

什么是OpenVino?以及如何使用OpenVino运行yolo

目录 Openvino简介 如何使用它&#xff1f; 构建源代码 Openvino IR模型 第一个Openvino示例 C语言示例 C示例 使用OpenVino跑Yolo模型 Openvino简介 Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包&#xff0c;主要用于对深度推理做优化。 …

开源,点云处理及三维重建软件(Point Cloud Viewer, PCV)的设计与实现

GitHub地址&#xff1a;point-cloud-viewer GitCode地址&#xff1a;point-cloud-viewer 文章目录 使用教程以及相关工具库Step 1 搭建环境Step 2 使用Cmake构建工程Step3 使用VS 编写code并编译执行 点云处理及三维重建软件(PCV)的设计与实现一&#xff0c; 软件总体设计1.1 软…

C++ LinuxWebServer 2万7千字的面经长文(下)

⭐️我叫忆_恒心,一名喜欢书写博客的在读研究生👨‍🎓。 如果觉得本文能帮到您,麻烦点个赞👍呗! Linux Web Server项目虽然是现在C++求职者的人手一个的项目,但是想要吃透这个项目,还是需要一定的基础的,以项目为导向,进行基础的学习。 涵盖了计算机网络(网络编程…

springboot网上商城项目(一)

springboot网上商城项目&#xff08;一&#xff09; &#xff08;一&#xff09;项目分析1.项目分析2.开发顺序3.前端资源测试 &#xff08;二&#xff09;用户注册1.创建数据库2.实体类编写3.注册&#xff08;持久层&#xff09;4.注册&#xff08;业务层&#xff09;5.注册&a…

类ChatGPT的部署与微调(下):从ChatGLM-6b到ChatDoctor、可商用

前言 随着『GPT4多模态/Microsoft 365 Copilot/Github Copilot X/ChatGPT插件』的推出&#xff0c;绝大部分公司的技术 产品 服务&#xff0c;以及绝大部分人的工作都将被革新一遍 类似iPhone的诞生 大家面向iOS编程 有了App Store现在有了ChatGPT插件/GPT应用商店&#xff…

国产CMS61850那些事-服务端

前面两篇文章国产CMS61850那些事-总述_LinuxZQ的博客-CSDN博客&#xff0c;cms61850那些事-实现_LinuxZQ的博客-CSDN博客分别对国产61850做了一些简单介绍和相关实现。本文接着给大家提供一款服务端demo&#xff0c;可以用来进行抓包等相关学习。 与之前分享的mms 61850一样&am…

如此这般,好吗?

让我们回顾一下 Linux 社区最新的愿景——推动去中心化的应用来解决发行版的碎片化。继上周的文章&#xff1a;“Snap、Flatpak 这种通吃所有发行版的打包方式真的有用吗&#xff1f;” 之后&#xff0c;一系列新观点浮出水面&#xff0c;其中可能包含关于这样应用是否有用的重…

Vmware安装Ubuntu出现 unable to find a medium containing a live file system

一、前言 由于未知的原因&#xff0c;使用Vmware安装Ubuntu的时候&#xff0c;总是遇到奇怪的问题。&#xff08;忘记截图了…&#xff09; 大致是&#xff1a; unable to find a medium containing a live file system找了几个帖子&#xff0c;参考1、参考2&#xff0c;但都…

GPT模型成功的背后用到了哪些以数据为中心的人工智能(Data-centric AI)技术?

人工智能&#xff08;Artificial Intelligence, AI&#xff09;最近取得了巨大的进展&#xff0c;特别是大语言模型&#xff08;Large Language Models, LLMs&#xff09;&#xff0c;比如最近火爆全网的ChatGPT和GPT-4。GPT模型在各项自然语言处理任务上有着惊人的效果。至于具…

JAVA Future类详解及Thread线程是如何运行Future类的

一、Future基本介绍 Future(java.util.concurrent Interface Future<V>)表示异步计算的结果。Future接口提供了检查计算是否完成、检查计算是否被取消、等待计算完成并获取计算结果等方法。 在并发编程中&#xff0c;我们经常用到非阻塞的模型&#xff0c;但继承thread类…

基于 SpringBoot+Vue+Java 的留守儿童系统的研究与实现(附源码,教程)

文章目录 1.研究背景2. 技术栈3.系统分析4系统设计5系统的详细设计与实现5.1系统功能模块5.2管理员功能模块 1.研究背景 以往的留守儿童爱心的管理&#xff0c;一般都是纸质文件来管理留守儿童爱心信息&#xff0c;传统的管理方式已经无法满足现代人们的需求&#xff1b;使用留…