基于STM32的开源简易示波器项目

news2024/11/24 3:39:48

目录

​一、前言

二、硬件接线

三、信号的采集

四、代码配置

五、数据的处理

六、模拟正弦波输出

七、模拟噪声或三角波输出

八、显示函数与按键控制


​一、前言

该项目是基于正点原子精英板制作的一个简易示波器,可以读取信号的频率和幅值,并可以通过按键改变采样频率和控制屏幕的更新暂停。

二、硬件接线

  • 将PA6与PA4相连,可观察到正弦波。

  • 将PA6与PA5相连,可观察到三角波/噪声(默认三角波)。

  • KEY_UP控制波形的更新和暂停。

  • KEY_1降低采样率。

  • KEY_0提高采样率。

三、信号的采集

信号的采集主要是依靠ADC(通过定时器触发采样,与在定时器中断中开启一次采样的效果类似,以此来控制采样的间隔时间相同),然后通过DMA将所采集的数据从ADC的DR寄存器转移到一个变量中,此时完成一次采样。

由于设定采集一次完整的波形需要1024个点,即需要连续采集1024次才算一次完整的波形采样(需要采集1024个点的原因在后面会提到)。

因此我们还需创建一个数组用于存储这些数据,并在DMA中断中,将成功转移到变量中的数据依次存储进数组(注意此数组中存入的数据是12位的数字量,还未做回归处理),完成1024个数据的采样和储存,用于后续在LCD上进行波形的显示和相关参数的处理。

此案例用到的是ADC1的通道6(即PA6口)进行数据的采样,主要需注意将ADC转换的触发方式改为定时器触发(我用的是定时器2的通道2进行触发,由于STM32手册提示只有在上升沿时可以触发ADC,因此我们需要让定时器2的通道2每隔固定的时间产生一个上升沿)。

将定时器2设置成PWM模式,即可令ADC1在定时器2的通道2每产生一次上升沿时触发采样,后续即可通过改变PWM的频率(即定时器的溢出频率),便可控制采样的频率。

四、代码配置

ADC的配置:

/**********************************************************
简介:ADC1-CH6初始化函数
***********************************************************/                  
void  Adc_Init(void)
{  
 ADC_InitTypeDef ADC_InitStructure; 
 GPIO_InitTypeDef GPIO_InitStructure;

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_ADC1, ENABLE );   //使能ADC1通道时钟
 

 RCC_ADCCLKConfig(RCC_PCLK2_Div6);   //设置ADC分频因子6 72M/6=12,ADC最大时间不能超过14M

 //PA6 作为模拟通道输入引脚                         
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;  //模拟输入
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 GPIO_Init(GPIOA, &GPIO_InitStructure); 

 ADC_DeInit(ADC1);  //复位ADC1,将外设 ADC1 的全部寄存器重设为缺省值

 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC工作模式:ADC1工作在独立模式
 ADC_InitStructure.ADC_ScanConvMode = DISABLE; //模数转换工作在单通道模式
 ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //模数转换工作在非连续转换模式
 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T2_CC2; //转换由定时器2的通道2触发(只有在上升沿时可以触发)
 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC数据右对齐
 ADC_InitStructure.ADC_NbrOfChannel = 1; //顺序进行规则转换的ADC通道的数目
 ADC_Init(ADC1, &ADC_InitStructure); //根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器   

 ADC_Cmd(ADC1, ENABLE); //使能指定的ADC1
 
 ADC_DMACmd(ADC1, ENABLE); //ADC的DMA功能使能
 
 ADC_ResetCalibration(ADC1); //使能复位校准  
  
 ADC_RegularChannelConfig(ADC1, ADC_Channel_6, 1, ADC_SampleTime_1Cycles5 );//ADC1通道6,采样时间为239.5周期  
  
 ADC_ResetCalibration(ADC1);//复位较准寄存器
  
 while(ADC_GetResetCalibrationStatus(ADC1)); //等待复位校准结束
 
 ADC_StartCalibration(ADC1);  //开启AD校准
 
 while(ADC_GetCalibrationStatus(ADC1));  //等待校准结束
 
 ADC_SoftwareStartConvCmd(ADC1, ENABLE);  //使能指定的ADC1的软件转换启动功能

}   

定时器的配置:

/******************************************************************
函数名称:TIM2_PWM_Init(u16 arr,u16 psc)
函数功能:定时器3,PWM输出模式初始化函数
参数说明:arr:重装载值
   psc:预分频值
备    注:通过TIM2-CH2的PWM输出触发ADC采样
*******************************************************************/  
void TIM2_PWM_Init(u16 arr,u16 psc)
{  
 GPIO_InitTypeDef GPIO_InitStructure;
 TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
 TIM_OCInitTypeDef  TIM_OCInitStructure;
 
 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); //使能定时器2时钟
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA  | RCC_APB2Periph_AFIO, ENABLE);  //使能GPIO外设和AFIO复用功能模块时钟
 
   //设置该引脚为复用输出功能,输出TIM2 CH2的PWM脉冲波形 GPIOA.1
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; //TIM_CH2
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  //复用推挽输出
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIO
 
   //初始化TIM3
 TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值
 TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值 
 TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim
 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式
 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位
 
 //初始化TIM2 Channel2 PWM模式  
 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式2
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能
 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性:TIM输出比较极性高
 TIM_OCInitStructure.TIM_Pulse=1000; //发生反转时的计数器数值,用于改变占空比
 TIM_OC2Init(TIM2, &TIM_OCInitStructure);  //根据T指定的参数初始化外设TIM2

 TIM_CtrlPWMOutputs(TIM2, ENABLE);//使能PWM输出
 
 TIM_Cmd(TIM2, ENABLE);  //使能TIM2
}

DMA配置:

/******************************************************************
函数名称:MYDMA1_Config()
函数功能:DMA1初始化配置
参数说明:DMA_CHx:DMA通道选择
   cpar:DMA外设ADC基地址
   cmar:DMA内存基地址
   cndtrDMA通道的DMA缓存的大小
备    注:
*******************************************************************/
void MYDMA1_Config(DMA_Channel_TypeDef* DMA_CHx,u32 cpar,u32 cmar,u16 cndtr)
{
 DMA_InitTypeDef DMA_InitStructure;
 NVIC_InitTypeDef NVIC_InitStructure;
 
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); //使能DMA传输
 
    DMA_DeInit(DMA_CHx);   //将DMA的通道1寄存器重设为缺省值
 DMA_InitStructure.DMA_PeripheralBaseAddr = cpar;  //DMA外设ADC基地址
 DMA_InitStructure.DMA_MemoryBaseAddr = cmar;  //DMA内存基地址
 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;  //数据传输方向,从外设读取发送到内存//
 DMA_InitStructure.DMA_BufferSize = cndtr;  //DMA通道的DMA缓存的大小
 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;  //外设地址寄存器不变
 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;  //内存地址寄存器递增
 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;  //数据宽度为16位
 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; //数据宽度为16位
 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;  //工作在循环模式
 DMA_InitStructure.DMA_Priority = DMA_Priority_High; //DMA通道 x拥有高优先级 
 DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;  //DMA通道x没有设置为内存到内存传输
 DMA_Init(DMA_CHx, &DMA_InitStructure);  //ADC1匹配DMA通道1
 
 DMA_ITConfig(DMA1_Channel1,DMA1_IT_TC1,ENABLE); //使能DMA传输中断 
 
 //配置中断优先级
 NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel1_IRQn;
 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0 ;
 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;  
 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;   
 NVIC_Init(&NVIC_InitStructure); 

 DMA_Cmd(DMA1_Channel1,ENABLE);//使能DMA通道
}

注意:

  1. 由于在设置PWM时将TIM_Pulse默认设置为1000,因此在初始化定时器2时,TIM_Period的值不能小于该值,可自行修改。TIM_Pulse的值并不会影响采样频率。

  2. 采样频率= 定时器2溢出频率=SYSCLK/预分频值/溢出值因此如果将TIM_Pulse设为1,TIM_Period设为2,TIM_Prescaler设为1,理论上采样频率最高可达36Mhz。

五、数据的处理

数据的处理主要是要求出信号的频率和幅值等相关参数。幅值可以通过找出之前存储1024个点的数组中最大最小值,回归处理过后算出差值。

难点主要在于频率的求取。一个信号中可能包含多种频率成分,而我显示的是幅值最大的频率分量(当然其他频率也可获得)。这里便用到了STM32提供的DSP库中的FFT(快速傅里叶变换),DSP库在最后的源码中有。

需要采样1024个点的原因:FFT算法要求样本数为2的n次方,而DSP库中提供了64,256和1024样本数对应的库函数,因此选用1024最大样本数可以使频率分辨率最小,更加精确。(定义频率分辨率f0=fs/N,其中fs等于采样率,N为采样点数)

需注意:FFT后的输出不是实际的信号频率,需要经过转换。f(k)=k*(fs/N),其中f(k)是实际频率,k是实际信号的最大幅度频率所对应的数。(详见下面代码,分享的源代码中公式有误,未重新上传)

获取频率的函数:

#define NPT 1024//一次完整采集的采样点数

/******************************************************************
函数名称:GetPowerMag()
函数功能:计算各次谐波幅值
参数说明:
备  注:先将lBufOutArray分解成实部(X)和虚部(Y),然后计算幅值(sqrt(X*X+Y*Y)
*******************************************************************/
void GetPowerMag(void)
{
    float X,Y,Mag,magmax;//实部,虚部,各频率幅值,最大幅值
    u16 i;
 
 //调用自cr4_fft_1024_stm32
 cr4_fft_1024_stm32(fftout, fftin, NPT); 
 //fftin为傅里叶输入序列数组,ffout为傅里叶输出序列数组
 
    for(i=1; i<NPT/2; i++)
    {
  X = (fftout[i] << 16) >> 16;
  Y = (fftout[i] >> 16);
  
  Mag = sqrt(X * X + Y * Y); 
  FFT_Mag[i]=Mag;//存入缓存,用于输出查验
  //获取最大频率分量及其幅值
  if(Mag > magmax)
  {
   magmax = Mag;
   temp = i;
  }
    }
 F=(u16)(temp*(fre*1.0/NPT));//源代码中此公式有误,将此复制进去
 
 LCD_ShowNum(280,180,F,5,16);
} 

六、模拟正弦波输出

此正弦波输出是用于调试示波器,观察显示和实际是否相同。主要利用DAC输出,在定时器3的中断中不断改变DAC的输出值,产生一个正弦波。因此改变正弦波的频率可以通过更改定时器3的溢出频率。(采用的PA4口进行输出)

在初始化时,我将定时器3的重装载值设置为40,预分频值设置为72,正弦波输出频率为72Mhz/40/72/1024≈24.5Hz(1024是因为将一个周期正弦波均分成1024个输出点,详见下面函数InitBufInArray())。

经采样处理后显示为24-25Hz,与实际值接近。(但是当采样频率提高到最大3.6kHz时,频率显示为32Hz左右,原因未知)

下面是相关代码:

u16 magout[NPT];
/******************************************************************
函数名称:InitBufInArray()
函数功能:正弦波值初始化,将正弦波各点的值存入magout[]数组中
参数说明:
备    注:
*******************************************************************/
void InitBufInArray(void)
{
    u16 i;
    float fx;
    for(i=0; i<NPT; i++)
    {
        fx = sin((PI2*i)/NPT);
        magout[i] = (u16)(2048+2048*fx);
    }
}

/******************************************************************
函数名称:sinout()
函数功能:正弦波输出
参数说明:
备    注:将此函数置于定时器中断中,可模拟输出正弦波
*******************************************************************/
void sinout(void)
{
 static u16 i=0;
 DAC_SetChannel1Data(DAC_Align_12b_R,magout[i]);
 i++;
 if(i>=NPT)
  i=0;
}

七、模拟噪声或三角波输出

模拟噪声或三角波输出可直接通过配置DAC,利用芯片内部的发生器产生。DAC2的转换由定时器4的TRGO触发(事件触发)。同时需要注意设置TRGO由更新事件产生。

若为三角波输出,频率=72Mhz/定时器重装载值/预分频系数/幅值/2

例如:初始化定时器的重装载值为2,预分频系数为36,幅值为最大(4096),即Freq=72Mhz/2/36/4096/2≈122Hz

具体代码如下所示:

void Dac2_Init(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;
    DAC_InitTypeDef DAC_InitType;

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE );   //使能PORTA通道时钟
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE );   //使能DAC通道时钟 

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;     // 端口配置
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;    //模拟输入
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
     
    DAC_InitType.DAC_Trigger=DAC_Trigger_T4_TRGO; //定时器4触发
    DAC_InitType.DAC_WaveGeneration=DAC_WaveGeneration_Noise;//产生噪声
    //DAC_WaveGeneration_Triangle产生三角波
    DAC_InitType.DAC_LFSRUnmask_TriangleAmplitude =  DAC_TriangleAmplitude_4095;//幅值设置为最大,即3.3V
    DAC_InitType.DAC_OutputBuffer=DAC_OutputBuffer_Disable ; //DAC1输出缓存关闭 BOFF1=1
    DAC_Init(DAC_Channel_2,&DAC_InitType);  //初始化DAC通道2

    DAC_Cmd(DAC_Channel_2, ENABLE);  //使能DAC-CH2
 
    DAC_SetChannel1Data(DAC_Align_12b_R, 0);  //12位右对齐数据格式设置DAC值 
}
void TIM4_Int_Init(u16 arr,u16 psc)
{
    TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;

    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); //时钟使能

    TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值  计数到5000为500ms
    TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值  10Khz的计数频率  
    TIM_TimeBaseStructure.TIM_ClockDivision = 0;     //设置时钟分割:TDTS = Tck_tim
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式
    TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位

    TIM_SelectOutputTrigger(TIM4, TIM_TRGOSource_Update);//触发外设方式为更新触发
 
    TIM_Cmd(TIM4, ENABLE);  //使能TIMx外设
        
}

八、显示函数与按键控制

1.显示波形只需将所获得的1024个采样数据选择一部分进行显示大致思路如下:

u16 pre_vol;//当前电压值对应点的纵坐标
u16 past_vol;//前一个电压值对应点的纵坐标
//adcx[]数组及通过DMA存入的1024个原始数据
pre_vol = 50+adcx[x]/4096.0*100;
LCD_DrawLine(x,past_vol,x+1,pre_vol);//根据实际,打点位置可进行相应更改
past_vol = pre_vol;

2.按键的控制是在外部中断中进行(正点原子资料中提供相应参考代码)比较重要的是改变采样频率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/461795.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JetpackCompose从入门到实战学习笔记14

JetpackCompose从入门到实战学习笔记14——Coli的简单使用 1.简介&#xff1a; Coil 是一个 Android官方出的配合Jetpack的图片加载库&#xff0c;通过 Kotlin 协程的方式加载图片。 优点如下&#xff1a; 更快: Coil 在性能上有很多优化&#xff0c;包括内存缓存和磁盘缓存…

C/C++基础知识

专栏&#xff1a;C/C 个人主页&#xff1a; C/C基础知识 前言C关键字(C98)命名空间命名空间的定义正常的命名空间的定义如何使用命名空间 命名空间可以嵌套同一个工程中允许存在多个相同名称的命名空间&#xff0c;编译器最后会合成同一个命名空间中(一个工程中的.h文件和test.…

(数字图像处理MATLAB+Python)第七章图像锐化-第一、二节:图像锐化概述和微分算子

文章目录 一&#xff1a;图像边缘分析二&#xff1a;一阶微分算子&#xff08;1&#xff09;梯度算子A&#xff1a;定义B&#xff1a;边缘检测C&#xff1a;示例D&#xff1a;程序 &#xff08;2&#xff09;Robert算子A&#xff1a;定义B&#xff1a;示例C&#xff1a;程序 &a…

Tailscale: Please Restart the Tailscale Windows Service

之前用的好好的&#xff0c;最近重新升级了一下Tailscale后发现一直连不上。右击win10右下角的Tailscale图标&#xff0c;第一行显示&#xff1a;Please Restart the Tailscale Windows Service。 我查看了一下服务&#xff0c;发现Tailscale是自动的&#xff0c;这里的启动类…

vuex存储数组(新建,增,删,更新),并存入localstorage定时删除

vuex存储数组(新建&#xff0c;增&#xff0c;删&#xff0c;更新)&#xff0c;并存入localstorage定时删除 本文目录 vuex存储数组(新建&#xff0c;增&#xff0c;删&#xff0c;更新)&#xff0c;并存入localstorage定时删除使用背景store中实现增删改组件中维护数组&#x…

缩小数据文件

今天又出现12.2c 环境的问题&#xff0c;1T的数据空间还剩下2G&#xff0c;吓了一身冷汗&#xff0c;赶紧查看原因&#xff0c;不知道哪路业务大神作妖了。 发现sysaux和system增加N多数据文件&#xff0c;而且目前使用不多&#xff0c; 缩小表空间的数据文件 可以使用下面的语…

直升机空气动力学基础---002 桨叶的主要参数

源于 1.桨叶的平面形状和主要参数 由于其设计制造比较简单&#xff0c;早期直升机大多采用矩形桨叶&#xff0c;缺点是在高速气流中&#xff0c;无法抑制桨尖涡&#xff0c;会消耗向下的诱导速度&#xff0c;降低旋翼的拉力。现代多采用梯形桨叶。 桨尖后掠能够降低桨尖涡 …

【Linux】Linux基本指令(2)

一.你如何看待指令 指令说白了就是可执行程序&#xff0c;且指令一定是在系统的某一个位置存在的&#xff0c;在执行指令前&#xff0c;我们需要先找到它。 二.man指令 众所周知&#xff0c;Linux的指令有很多&#xff0c;指令的选项也有很多&#xff0c;我们不可能全记住&…

android注解注入AspectJ面向切面AOP插桩技术改变android原生类对象行为记录View点击事件,Java(3)

droid注解注入AspectJ面向切面AOP插桩技术改变android原生类对象行为记录View点击事件&#xff0c;Java&#xff08;3&#xff09; 动态改变Toast提示的内容&#xff0c;弹之前修改。Button在每次点击后记录。 import android.util.Log; import android.widget.Toast;import o…

基于天牛须(BAS)与NSGA-Ⅱ混合算法的交直流混合微电网多场景多目标优化调度(Matlab代码实现)

&#x1f4a5; &#x1f4a5; &#x1f49e; &#x1f49e; 欢迎来到本博客 ❤️ ❤️ &#x1f4a5; &#x1f4a5; &#x1f3c6; 博主优势&#xff1a; &#x1f31e; &#x1f31e; &#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 …

论Shell编程规范与变量

目录 一&#xff1a;shell脚本 1.shell概述 2.linux中包含的常用shell 3.shell脚本概述 4.shell脚本应用场景 5.shell脚本的作用 6.用户的登录shell 二&#xff1a; 编写脚本 1.脚本的基本格式 2.shell脚本的执行 3. 交互式硬件设备 4.重定向操作 5.管道操作符号 “…

信号完整性分析基础知识之传输线和反射(一):阻抗变化引起反射

阻抗不连续引起的反射和失真可能会导致信号的误触发和误码&#xff0c;这是导致信号失真和质量下降的主要原因。 在某些情况下&#xff0c;这看起来像振铃。当信号电平下降时&#xff0c;下冲会影响噪声预算并导致误触发。或者&#xff0c;在下降信号上&#xff0c;峰值可能会上…

阅读笔记 First Order Motion Model for Image Animation

文章解决的是图片动画的问题。假设有源图片和驱动视频&#xff0c;并且其中的物体是同一类的&#xff0c;文章的方法让源图片中的物体按照驱动视频中物体的动作而动。 文章的方法只需要一个同类物体的视频集&#xff0c;不需要而外的标注。 方法 该方法基于self-supervised策…

Qt信号槽原理

Qt之信号槽原理 一.概述 所谓信号槽&#xff0c;实际就是观察者模式。当某个事件发生之后&#xff0c;比如&#xff0c;按钮检测到自己被点击了一下&#xff0c;它就会发出一个信号&#xff08;signal&#xff09;。这种发出是没有目的的&#xff0c;类似广播。如果有对象对这…

idea无效的目标版本和类文件具有错误的版本 61.0, 应为 52.0错误(测试有用,一次性解决问题)

SpringBoot己更新到3后&#xff0c;使用的JAVA版本最低要求JAVA17&#xff0c;如果低于这个版本就是报错&#xff1a; 问题一&#xff1a;类文件具有错误的版本 61.0, 应为 52.0。 解决就只有升级JAVA-sdk&#xff1a; 官方下载地址&#xff1a;JAVA20-17 官方推荐更好的sd…

MySQL 视图、函数和存储过程

MySQL 是一种流行的关系型数据库管理系统&#xff0c;其具有强大的功能和灵活性&#xff0c;使其成为了许多企业和个人喜爱的数据库选择。在 MySQL 中&#xff0c;视图、函数和存储过程是常见的数据库对象&#xff0c;它们都有助于提高数据的处理效率和可重用性。 一、视图 视…

UE5实现Runtime环境下绘制点功能

文章目录 1.实现目标2.实现过程2.1 C++实现2.2 蓝图调用3.参考资料1.实现目标 UE5在Runtime环境下基于PDI绘制点,GIF动态如下: 2.实现过程 UE常用的在运行时环境下绘制点方法主要有两种。一种是基于Mesh,即添加Sphere等StaticMesh来模拟显示绘制点;另一种是基于Primitive的…

用代码实现标签打印的三种方式

最近项目中要实现标签打印的功能&#xff0c;有几个条件 标签模板可以事先生成&#xff0c;用的是CodeSoft软件标签模板里面有二维码标签模板里面有一些变量&#xff0c;要求打印的时候自动填充产线电脑上没有安装CodeSoft&#xff0c;即便安装也不能使用&#xff0c;因为没有…

Java线程池及拒绝策略详解

前文提到线程的使用以及线程间通信方式&#xff0c;通常情况下我们通过new Thread或者new Runnable创建线程&#xff0c;这种情况下&#xff0c;需要开发者手动管理线程的创建和回收&#xff0c;线程对象没有复用&#xff0c;大量的线程对象创建与销毁会引起频繁GC&#xff0c;…

Unity入门(一)

Unity Unity是一套完善体系与编辑器的跨平台游戏开发工具&#xff0c;也可以称之为游戏引擎。游戏引擎是指一些编写好的可以重复利用的代码与开发游戏所用的各功能编辑器。 基于C#编程&#xff0c;易上手&#xff0c;高安全性独特的面向组件游戏开发思想让游戏开发更加简单易…