操作Redis只有RedisTemplate吗?

news2024/11/15 12:30:47

还在只用 RedisTemplate 访问 Redis 吗?这几种方式给你安排上!

图片

  • 开始准备
  • RedisTemplate
  • JPA Repository
  • Cache
  • 总结

开始准备

开始之前我们需要有Redis安装,我们采用本机Docker运行Redis,主要命令如下

docker pull redis
docker run --name my_redis -d -p 6379:6379 redis
docker exec -it my_redis bash
redis-cli

前面两个命令是启动redis docker,后两个是连接到docker,在使用redis-cli 去查看redis里面的内容,主要查看我们存在redis里面的数据。

RedisTemplate

我们先从RedisTemplate开始,这个是最好理解的一种方式,我之前在工作中也使用过这种方式,先看代码示例 我们先定义一个POJO类

@Data
@Builder
@NoArgsConstructor
@AllArgsConstructor
public class Book implements Serializable {
    private Long id;
    private String name;
    private String author;
}

一个很简单的BOOK类,三个字段:idnameauthor。再来一个RedisTemplate的Bean

@Bean
public RedisTemplate<String, Book> redisTemplate(RedisConnectionFactory redisConnectionFactory) {
    RedisTemplate<String, Book> template = new RedisTemplate<>();
    template.setConnectionFactory(redisConnectionFactory);
    return template;
}

再定义一个使用这个RedisTemplate的Service类

public Optional<Book> findOneBook(String name) {
    HashOperations<String, String, Book> hashOperations = redisTemplate.opsForHash();
    if (redisTemplate.hasKey(CACHE) && hashOperations.hasKey(CACHE, name)) {
        log.info("Get book {} from Redis.", name);
        return Optional.of(hashOperations.get(CACHE, name));
    }

    Optional<Book> book = bookRepository.getBook(name);
    log.info("Book Found: {}", book);
    if (book.isPresent()) {
        log.info("Put book {} to Redis.", name);
        hashOperations.put(CACHE, name, book.get());
        redisTemplate.expire(CACHE, 10, TimeUnit.MINUTES);
    }
    return book;
}

我们使用Hash来存储这个Book信息,在上面的方法中查找书名存不存在Redis中,如果存在就直接返回,如果不存在就去持久化存储中找,找到就再通过Template写入到Redis中, 这是缓存的通用做法。使用起来感觉很方便。

我们这里为了简单没有使用持久化存储,就硬编码了几条数据,代码如下

@Repository
public class BookRepository {
    Map<String, Book> bookMap = new HashMap<>();
    public BookRepository(){
        bookMap.put("apache kafka", Book.builder()
                .name("apache kafka").id(1L).author("zhangsan")
                .build());
        bookMap.put("python", Book.builder()
                .name("python").id(2L).author("lisi")
                .build());
    }

    public Optional<Book> getBook(String name){
        if(bookMap.containsKey(name)){
            return Optional.of(bookMap.get(name));
        }
        else{
            return Optional.empty();
        }
    }
}

我们调用 bookService.findOneBook("python")bookService.findOneBook("apache kafka"); 来把数据写入到换存中

我们来看下存储在Redis的数据长什么样子。

127.0.0.1:6379> keys *
1) "\xac\xed\x00\x05t\x00\x04book"
127.0.0.1:6379> type "\xac\xed\x00\x05t\x00\x04book"
hash
127.0.0.1:6379> hgetall "\xac\xed\x00\x05t\x00\x04book"
1) "\xac\xed\x00\x05t\x00\x06python"
2) "\xac\xed\x00\x05sr\x00&com.ken.redistemplatesample.model.Book=\x19\x96\xfb\x7f\x7f\xda\xbe\x02\x00\x03L\x00\x06authort\x00\x12Ljava/lang/String;L\x00\x02idt\x00\x10Ljava/lang/Long;L\x00\x04nameq\x00~\x00\x01xpt\x00\x04lisisr\x00\x0ejava.lang.Long;\x8b\xe4\x90\xcc\x8f#\xdf\x02\x00\x01J\x00\x05valuexr\x00\x10java.lang.Number\x86\xac\x95\x1d\x0b\x94\xe0\x8b\x02\x00\x00xp\x00\x00\x00\x00\x00\x00\x00\x02t\x00\x06python"
3) "\xac\xed\x00\x05t\x00\x0capache kafka"
4) "\xac\xed\x00\x05sr\x00&com.ken.redistemplatesample.model.Book=\x19\x96\xfb\x7f\x7f\xda\xbe\x02\x00\x03L\x00\x06authort\x00\x12Ljava/lang/String;L\x00\x02idt\x00\x10Ljava/lang/Long;L\x00\x04nameq\x00~\x00\x01xpt\x00\bzhangsansr\x00\x0ejava.lang.Long;\x8b\xe4\x90\xcc\x8f#\xdf\x02\x00\x01J\x00\x05valuexr\x00\x10java.lang.Number\x86\xac\x95\x1d\x0b\x94\xe0\x8b\x02\x00\x00xp\x00\x00\x00\x00\x00\x00\x00\x01t\x00\x0capache kafka"

我们可以看到数据被存在了key是“\xac\xed\x00\x05t\x00\x04book”的一个Hash表中, Hash里面有两条记录。大家发现一个问题没有?

就是这个key不是我们想象的用“book”做key,而是多了一串16进制的码, 这是因为RedisTemplate使用了默认的JdkSerializationRedisSerializer 去序列化我们的key和value,如果大家都用Java语言那没有问题, 如果有人用Java语言写,有人用别的语言读,那就有问题,就像我开始的时候用hgetall "book"始终拿不到数据那样。

RedisTemplate也提供了StringRedisTemplate来方便大家需要使用String来序列化redis里面的数据。简单看下代码

@Bean
public StringRedisTemplate stringRedisTemplate(RedisConnectionFactory redisConnectionFactory)
{
    StringRedisTemplate template = new StringRedisTemplate();
    template.setConnectionFactory(redisConnectionFactory);
    return template;
}

public Optional<String> getBookString(String name){
    HashOperations<String, String, String> hashOperations = stringRedisTemplate.opsForHash();
    if (stringRedisTemplate.hasKey(STRINGCACHE) && hashOperations.hasKey(STRINGCACHE, name)) {
        log.info("Get book {} from Redis.", name);
        return Optional.of(hashOperations.get(STRINGCACHE, name));
    }

    Optional<Book> book = bookRepository.getBook(name);
    log.info("Book Found: {}", book);
    if (book.isPresent()) {
        log.info("Put book {} to Redis.", name);
        hashOperations.put(STRINGCACHE, name, book.get().getAuthor());
        stringRedisTemplate.expire(STRINGCACHE, 10, TimeUnit.MINUTES);
        return Optional.of(book.get().getAuthor());
    }
    return Optional.empty();
}

使用上就没有那么方便,你就得自己写需要存的是哪个字段,读出来是哪个字段。

127.0.0.1:6379> keys *
1) "string_book"
127.0.0.1:6379> hgetall string_book
1) "python"
2) "lisi"
3) "apache kafka"
4) "zhangsan"

如上图所示,使用客户端读出来看起来就比较清爽一些。也可以看到占用的Size会小很多,我们这个例子相差7倍,如果是数据量大,这个还是比较大的浪费。

127.0.0.1:6379> keys *
1) "\xac\xed\x00\x05t\x00\x04book"
2) "string_book"
127.0.0.1:6379> memory usage "string_book"
(integer) 104
127.0.0.1:6379> memory usage "\xac\xed\x00\x05t\x00\x04book"
(integer) 712

JPA Repository

我们知道使用JPA Repository来访问DataBase的时候,增删改查那样的操作能够很方便的实现,基本就是定义个接口,代码都不用写,Spring就帮我们完成了大部分的工作,那么访问Redis是不是也可以这样呢?答案是肯定的,我们来看代码 首先我们还是定义一个POJO

@RedisHash(value = "cache-book", timeToLive = 600)
@Data
@Builder
@NoArgsConstructor
@AllArgsConstructor
public class CacheBook implements Serializable {

    @Id
    private Long userId;

    @Indexed
    private String name;

    private String author;
}

这个类与我们上面template上面的类的区别就是我们加了两个注解, 在类开头加了 @RedisHash(value = "cache-book", timeToLive = 600) 在字段上面加了@Id@Indexed 定义一个Repository的接口

public interface CacheBookRepository extends CrudRepository<CacheBook, Long> {
    Optional<CacheBook> findOneByName(String name);
}

再定义一个service和上面那个例子template一样,缓存中有就到缓存中拿,没有就到持久化存储中找,并写入缓存

@Slf4j
@Service
public class BookService {
    private static final String CACHE = "repository-book";
    @Autowired
    private CacheBookRepository cacheRepository;

    @Autowired
    private BookRepository bookRepository;

    public Optional<CacheBook> findOneBook(String name) {
        Optional<CacheBook> optionalCacheBook = cacheRepository.findOneByName(name);
        if(!optionalCacheBook.isPresent())
        {
            Optional<CacheBook> book = bookRepository.getBook(name);
            log.info("Book Found: {}", book);
            if (book.isPresent()) {
                log.info("Put book {} to Redis.", name);
                cacheRepository.save(book.get());
            }
            return book;
        }
        return optionalCacheBook;
    }
}

代码很简单,简单到不敢相信是真的。还是一样,调用这个方法,我们来看存在Redis里面的数据

127.0.0.1:6379> keys *
1) "repository-book:2"
2) "repository-book:2:idx"
3) "repository-book"
4) "repository-book:name:apache kafka"
5) "repository-book:name:python"
6) "repository-book:1:idx"
7) "repository-book:1"

哇,感觉存的内容有些多, 不用怕我们来看下各自存什么数据 首先看最短的一个

127.0.0.1:6379> smembers repository-book
1) "1"
2) "2"

它里面存的是我们的id所有的value,可以用来判断id是否存在 再来看

127.0.0.1:6379> hgetall repository-book:2
1) "_class"
2) "com.ken.redisrepositorysample.model.CacheBook"
3) "author"
4) "lisi"
5) "name"
6) "python"
7) "userId"
8) "2"

这个是我们数据存放的地方

127.0.0.1:6379> smembers repository-book:1:idx
1) "repository-book:name:apache kafka"
127.0.0.1:6379> smembers "repository-book:name:apache kafka"
1) "1"

另外两个都是set, 存在在它们里面的数据是索引信息。由此可以看出通过JPA Repository 的方式,代码很少,而且存储的数据也很通用,个人觉得是比较理想的访问方法。

Cache

我们已经看了两种方式,在访问的时候遵循这样的模式:缓存中有就从缓存中返回,没有就从持久化存储中找,然后写入缓存,这部分代码我也不想自己写,那么Cache就是你的救星。

我们先看代码 我们这次使用内存数据库H2作为持久化存储, 放一个schema.sql在resouces下面

drop table t_book if exists;


create table t_book (
    id bigint auto_increment,
    create_time timestamp,
    update_time timestamp,
    name varchar(255),
    author varchar(200),
    primary key (id)
);

insert into t_book (name, author, create_time, update_time) values ('python', 'zhangsan', now(), now());
insert into t_book (name, author, create_time, update_time) values ('hadoop', 'lisi', now(), now());
insert into t_book (name, author, create_time, update_time) values ('java', 'wangwu', now(), now());

然后定义POJO

@Entity
@Table(name = "T_BOOK")
@Data
@Builder
@NoArgsConstructor
@AllArgsConstructor
public class CacheBook implements Serializable {

    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private Long id;

    private String name;

    private String author;

    @Column(updatable = false)
    @CreationTimestamp
    private Date createTime;
    @UpdateTimestamp
    private Date updateTime;
}

完全是和数据库绑定的代码,和缓存没有任何关系 一个Repository来访问数据库

public interface BookRepository extends JpaRepository<CacheBook, Long> {
}

定义一个service来调用它

@Slf4j
@Service
@CacheConfig(cacheNames = "cache-book")
public class BookService {

    @Autowired
    private BookRepository bookRepository;

    @Cacheable
    public List<CacheBook> findAllCoffee() {
        return bookRepository.findAll();
    }

    @CacheEvict
    public void reloadCoffee() {
    }
}

这里就比较关键了,在类上加上了注解 @CacheConfig(cacheNames = "cache-book") 在方法上面加上了Cacheable和CacheEvict, Cacheable这个方法就是用来实现逻辑,有就从缓存中拿,没有就从数据库拿的,CacheEvict是调用这个方法的时候清除缓存。

然后再启动入口程序的地方加上注解 @EnableJpaRepositories @EnableCaching(proxyTargetClass = true) 在配置文件application.properties中加上

spring.jpa.hibernate.ddl-auto=none
spring.jpa.properties.hibernate.show_sql=true
spring.jpa.properties.hibernate.format_sql=true

management.endpoints.web.exposure.include=*

spring.cache.type=redis
spring.cache.cache-names=cache-book
spring.cache.redis.time-to-live=600000
spring.cache.redis.cache-null-values=false

spring.redis.host=localhost

这样就可以了, 感觉就是通过配置下就把缓存给完成了,非常的简单 我们来看Redis中是怎么存的

127.0.0.1:6379> keys *
1) "cache-book::SimpleKey []"
127.0.0.1:6379> get "cache-book::SimpleKey []"
"\xac\xed\x00\x05sr\x00\x13java.util.ArrayListx\x81\xd2\x1d\x99\xc7a\x9d\x03\x00\x01I\x00\x04sizexp\x00\x00\x00\x03w\x04\x00\x00\x00\x03sr\x00(com.ken.rediscachesample.model.CacheBook\xec\xcbR=\xe1U\x9b\xf7\x02\x00\x05L\x00\x06authort\x00\x12Ljava/lang/String;L\x00\ncreateTimet\x00\x10Ljava/util/Date;L\x00\x02idt\x00\x10Ljava/lang/Long;L\x00\x04nameq\x00~\x00\x03L\x00\nupdateTimeq\x00~\x00\x04xpt\x00\bzhangsansr\x00\x12java.sql.Timestamp&\x18\xd5\xc8\x01S\xbfe\x02\x00\x01I\x00\x05nanosxr\x00\x0ejava.util.Datehj\x81\x01KYt\x19\x03\x00\x00xpw\b\x00\x00\x01\x84\xff]\x85\xb0x\b-\x81\x80sr\x00\x0ejava.lang.Long;\x8b\xe4\x90\xcc\x8f#\xdf\x02\x00\x01J\x00\x05valuexr\x00\x10java.lang.Number\x86\xac\x95\x1d\x0b\x94\xe0\x8b\x02\x00\x00xp\x00\x00\x00\x00\x00\x00\x00\x01t\x00\x06pythonsq\x00~\x00\bw\b\x00\x00\x01\x84\xff]\x85\xb0x\b-\x81\x80sq\x00~\x00\x02t\x00\x04lisisq\x00~\x00\bw\b\x00\x00\x01\x84\xff]\x85\xb0x\b<\xbf\xd8sq\x00~\x00\x0b\x00\x00\x00\x00\x00\x00\x00\x02t\x00\x06hadoopsq\x00~\x00\bw\b\x00\x00\x01\x84\xff]\x85\xb0x\b<\xbf\xd8sq\x00~\x00\x02t\x00\x06wangwusq\x00~\x00\bw\b\x00\x00\x01\x84\xff]\x85\xb0x\b<\xbf\xd8sq\x00~\x00\x0b\x00\x00\x00\x00\x00\x00\x00\x03t\x00\x04javasq\x00~\x00\bw\b\x00\x00\x01\x84\xff]\x85\xb0x\b<\xbf\xd8x"

看到没有,就是当成Redis里面的String来存的, 如果数据量比较小,那是非常的方便,如果数据量大,这种方式就有些问题了。

总结

我们看了这三种方式,这里仅仅是做了个入门,每个里面都有很多细节的地方需要去研究和使用,整体的感觉是要想使用的简单,那么存储在Redis中的数据就要量少,量大后,就需要自己来定制了,那基本上要用RedisTemplate来做一些工作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/459121.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

细数Java集合List的10个坑

1 Arrays.asList转换基本类型数组的坑 在实际的业务开发中&#xff0c;我们通常会进行数组转List的操作&#xff0c;通常我们会使用Arrays.asList来进行转换 但是在转换基本类型的数组的时候&#xff0c;却出现转换的结果和我们想象的不一致。 上代码 int[] arr {1, 2, 3}…

Centos安装python3详细教程

Centos安装python3详细教程 转载&#xff1a;https://blog.csdn.net/qq_32742573/article/details/119849634?spm1001.2014.3001.5502 文章目录 Centos安装python3详细教程 1、先查看系统python的位置在哪儿2、下载python3的包之前&#xff0c;要先安装相关的依赖包&#xff0…

接打电话的蓝牙耳机哪个牌子好?接听电话蓝牙耳机推荐

耳机已经成为人们生活中不可或缺的重要物件&#xff0c;乘坐公共交通&#xff0c;在图书馆学习&#xff0c;在操场上运动&#xff0c;可以看到许多不同种类的蓝牙耳机&#xff0c;可知耳机品牌、种类众多&#xff0c;质量良莠不齐&#xff0c;耳机产品的价格区间也相差巨大&…

DAB-Deformable-DETR代码学习记录之模型构建

DAB-DETR的作者在Deformable-DETR基础上&#xff0c;将DAB-DETR的思想融入到了Deformable-DETR中&#xff0c;取得了不错的成绩。今天博主通过源码来学习下DAB-Deformable-DETR模型。 首先我么看下Deformable的创新之处&#xff1a; Deformable-DETR创新 多尺度融合 首先便是…

如何真正认识 Linux 系统结构?这篇文章告诉你

Linux 系统一般有 4 个主要部分&#xff1a;内核、shell、文件系统和应用程序。内核、shell 和文件系统一起形成了基本的操作系统结构&#xff0c;它们使得用户可以运行程序、管理文件并使用系统。 Linux内核 内核是操作系统的核心&#xff0c;具有很多最基本功能&#xff0c;…

Springboot获取jar包中resources资源目录下的文件

阿萨斯多问题现象&#xff1a; 今天在项目中遇到一个业务场景&#xff0c;需要用到resources资源目录下的文件&#xff0c;然后就在思考一个问题&#xff1a; 当项目打成jar后&#xff0c;Springboot要如何获取resources资源目录下的文件呢&#xff1f; 问题分析&#xff1a; 如…

基于GPT-3和DALL-E的原创漫画生成

我花了上个月的时间探索如何使用 OpenAI 的 GPT-3 文本生成器和他们的 DALL-E 图像到文本系统来创建新的漫画&#xff0c;而无需编写任何源代码。 请注意&#xff0c;这两个系统都处于测试阶段&#xff0c;在我用完所有免费代币后&#xff0c;它们开始收取象征性的使用费。 不过…

数据湖Iceberg-简介(1)

文章目录 Iceberg简介概述特性数据存储、计算引擎插件化实时流批一体数据表演化&#xff08;Table Evolution&#xff09;模式演化&#xff08;Schema Evolution&#xff09;分区演化&#xff08;Partition Evolution&#xff09;列顺序演化&#xff08;Sort Order Evolution&a…

Inpaint9.1最新网页版下载及inpaint怎么去水印教程

市面上去水印的软件很多&#xff0c;但专业去除水印的&#xff0c;除了Photoshop&#xff0c;inpaint占有一席之地。在今天的数字时代&#xff0c;我们经常会遇到需要处理图片的情况。然而&#xff0c;当我们遇到水印在图片上&#xff0c;我们就需要寻找一个有效的方式来去除它…

总结831

学习目标&#xff1a; 4月&#xff08;复习完高数18讲内容&#xff0c;背诵21篇短文&#xff0c;熟词僻义300词基础词&#xff09; 学习内容&#xff1a; 暴力英语&#xff1a;背诵《start with you》,《大独裁者》第四段&#xff0c;默写《start with you》 高等数学&#x…

信号量【Linux】

文章目录 1. POSIX信号量1.1 引入1.2 概念1.3 PV原语&#xff08;原理&#xff09;1.4 相关接口 2. 二进制信号量3. 基于环形队列的生产消费模式3.1 介绍3.2 为什么要使用环形队列3.3 环形队列的作用3.4 实现互斥和同步两个信号量框架生产和消费的逻辑完善环形队列1信号量完善环…

MyBatis-学习修改尚硅谷最新教程笔记

一、MyBatis mybatis mybatis.xml配置文件 mapper接口类 mapper.xml映射处理配置文件 1、MyBatis简介 1.1、MyBatis历史 MyBatis最初是Apache的一个开源项目iBatis, 2010年6月这个项目由Apache Software Foundation迁移到了Google Code。随着开发团队转投Google Code旗下…

【图像抠图】【深度学习】Ubuntu18.04下GFM官方代码Pytorch实现

【图像抠图】【深度学习】Ubuntu18.04下GFM官方代码Pytorch实现 提示:最近开始在【图像抠图】方面进行研究,记录相关知识点,分享学习中遇到的问题已经解决的方法。 文章目录 【图像抠图】【深度学习】Ubuntu18.04下GFM官方代码Pytorch实现前言数据集说明1.AM-2k【自然动物】2.B…

银行数字化转型导师坚鹏:学习贯彻二十大精神 解码乡村振兴之道

学习贯彻二十大精神 解码乡村振兴之道&#xff08;保险客户&#xff09; 课程背景&#xff1a; 很多保险公司从业人员存在以下问题&#xff1a; 不知道如何准确解读二十大精神&#xff1f; 不清楚乡村振兴相关政策要求&#xff1f; 不知道如何有效推动乡村振兴&#xf…

【JavaEE初阶】多线程(三)volatile wait notify关键字 单例模式

摄影分享~~ 文章目录 volatile关键字volatile能保证内存可见性 wait和notifywaitnotifynotifyAllwait和sleep的区别小练习 多线程案例单例模式饿汉模式懒汉模式 volatile关键字 volatile能保证内存可见性 import java.util.Scanner;class MyCounter {public int flag 0; }p…

2023新型智慧城市解决方案(ppt可编辑)

本资料来源公开网络&#xff0c;仅供个人学习&#xff0c;请勿商用&#xff0c;如有侵权请联系删除 智慧城市建设整体框架 智慧城市建设内容 智慧城市云基础架构的必要性 智慧城市建设效益 智慧城市建设效益17 智慧城市建设模式建议 智慧城市建设-整体解决法方案 智慧城市建设…

关于Nginx

一、常见的“服务器中间件”&#xff08;即http server-web中间件&#xff09;有哪些 Tomcat、Jboss、Apache、WeBlogic、Jetty、webSphere、Nginx、IIS 二、nginx的特点 1.性能高&#xff0c;能承受5万并发每秒&#xff1b; 2.内存、磁盘&#xff0c;读取消耗空间小。 三、…

「背包问题-步入」失衡天平

失衡天平 https://ac.nowcoder.com/acm/contest/24213/1021 题目描述 终于Alice走出了大魔王的陷阱&#xff0c;可是现在傻傻的她忘了带武器了&#xff0c;这可如何是好???这个时候&#xff0c;一个神秘老人走到她面前答应无偿给她武器&#xff0c;但老人有个条件&#xff…

2023-04-24 算法面试中常见的贪心算法问题

贪心算法 1 贪心选择例题 455.饼干分配 假设你想给小朋友们饼干。每个小朋友最多能够给一块儿饼干。每个小朋友都有一个“贪心指数”&#xff0c;称为g(i)&#xff0c;g(i)表示的是这名小朋友需要的饼干大小的最小值。同时&#xff0c;每个饼干都有一个大小值s(i)。如果s(j)…

转换json格式的日期为Javascript对象的函数

项目中碰到了用jQuery从后台获取的json格式的日期的字符串&#xff0c;需要将此字符串转换成JavaScript的日期对象。 代码如下: //转换json格式的日期&#xff08;如&#xff1a;{ServerDatetime:"\/Date(1278930470649)\/"}&#xff09;为Javascript的日期对象 fu…