固定窗口限流算法
介绍
固定窗口限流算法(
Fixed Window Rate Limiting Algorithm
)是一种最简单的限流算法,其原理是在固定时间窗口(单位时间
)内限制请求的数量。该算法将时间分成固定的窗口,并在每个窗口内限制请求的数量。具体来说,算法将请求按照时间顺序放入时间窗口中,并计算该时间窗口内的请求数量,如果请求数量超出了限制,则拒绝该请求
假设单位时间(固定时间窗口)是1
秒,限流阀值为3
。在单位时间1
秒内,每来一个请求,计数器就加1
,如果计数器累加的次数超过限流阀值3
,后续的请求全部拒绝。等到1s
结束后,计数器清0
,重新开始计数。如下图:
代码实现
public static Integer counter = 0; //统计请求数
public static long lastAcquireTime = 0L;
public static final Long windowUnit = 1000L ; //假设固定时间窗口是1000ms
public static final Integer threshold = 10; // 窗口阀值是10
/**
* 固定窗口时间算法
* @return
*/
public synchronized boolean fixedWindowsTryAcquire() {
long currentTime = System.currentTimeMillis(); //获取系统当前时间
if (currentTime - lastAcquireTime > windowUnit) { //检查是否在时间窗口内
counter = 0; // 计数器清0
lastAcquireTime = currentTime; //开启新的时间窗口
}
if (counter < threshold) { // 小于阀值
counter++; //计数统计器加1
return true;
}
return false;
}
优缺点
- 存在明显的临界问题
滑动窗口限流算法
介绍
滑动窗口限流算法是一种常用的限流算法,用于控制系统对外提供服务的速率,防止系统被过多的请求压垮。它将单位时间周期分为
n
个小周期,分别记录每个小周期内接口的访问次数,并且根据时间滑动删除过期的小周期。它可以解决固定窗口临界值的问题。
假设单位时间还是1
s,滑动窗口算法把它划分为5
个小周期,也就是滑动窗口(单位时间)被划分为5
个小格子。每格表示0.2s
。每过0.2s
,时间窗口就会往右滑动一格。然后呢,每个小周期,都有自己独立的计数器,如果请求是0.83s
到达的,0.8~1.0s
对应的计数器就会加1
。
伪代码
/**
* 单位时间划分的小周期(单位时间是1分钟,10s一个小格子窗口,一共6个格子)
*/
private int SUB_CYCLE = 10;
/**
* 每分钟限流请求数
*/
private int thresholdPerMin = 100;
/**
* 计数器, k-为当前窗口的开始时间值秒,value为当前窗口的计数
*/
private final TreeMap<Long, Integer> counters = new TreeMap<>();
/**
* 滑动窗口时间算法实现
*/
public synchronized boolean slidingWindowsTryAcquire() {
long currentWindowTime = LocalDateTime.now().toEpochSecond(ZoneOffset.UTC) / SUB_CYCLE * SUB_CYCLE; //获取当前时间在哪个小周期窗口
int currentWindowNum = countCurrentWindow(currentWindowTime); //当前窗口总请求数
//超过阀值限流
if (currentWindowNum >= thresholdPerMin) {
return false;
}
//计数器+1
counters.get(currentWindowTime)++;
return true;
}
/**
* 统计当前窗口的请求数
*/
private int countCurrentWindow(long currentWindowTime) {
//计算窗口开始位置
long startTime = currentWindowTime - SUB_CYCLE* (60s/SUB_CYCLE-1);
int count = 0;
//遍历存储的计数器
Iterator<Map.Entry<Long, Integer>> iterator = counters.entrySet().iterator();
while (iterator.hasNext()) {
Map.Entry<Long, Integer> entry = iterator.next();
// 删除无效过期的子窗口计数器
if (entry.getKey() < startTime) {
iterator.remove();
} else {
//累加当前窗口的所有计数器之和
count =count + entry.getValue();
}
}
return count;
}
优缺点
- 突发流量无法处理
漏桶限流算法
介绍
漏桶限流算法(
Leaky Bucket Algorithm
)是一种流量控制算法,用于控制流入网络的数据速率,以防止网络拥塞。它的思想是将数据包看作是水滴,漏桶看作是一个固定容量的水桶,数据包像水滴一样从桶的顶部流入桶中,并通过桶底的一个小孔以一定的速度流出,从而限制了数据包的流量。
漏桶限流算法的基本工作原理是:对于每个到来的数据包,都将其加入到漏桶中,并检查漏桶中当前的水量是否超过了漏桶的容量。如果超过了容量,就将多余的数据包丢弃。如果漏桶中还有水,就以一定的速率从桶底输出数据包,保证输出的速率不超过预设的速率,从而达到限流的目的。
伪代码
/**
* LeakyBucket 类表示一个漏桶,
* 包含了桶的容量和漏桶出水速率等参数,
* 以及当前桶中的水量和上次漏水时间戳等状态。
*/
public class LeakyBucket {
private final long capacity; // 桶的容量
private final long rate; // 漏桶出水速率
private long water; // 当前桶中的水量
private long lastLeakTimestamp; // 上次漏水时间戳
public LeakyBucket(long capacity, long rate) {
this.capacity = capacity;
this.rate = rate;
this.water = 0;
this.lastLeakTimestamp = System.currentTimeMillis();
}
/**
* tryConsume() 方法用于尝试向桶中放入一定量的水,如果桶中还有足够的空间,则返回 true,否则返回 false。
* @param waterRequested
* @return
*/
public synchronized boolean tryConsume(long waterRequested) {
leak();
if (water + waterRequested <= capacity) {
water += waterRequested;
return true;
} else {
return false;
}
}
/**
* 。leak() 方法用于漏水,根据当前时间和上次漏水时间戳计算出应该漏出的水量,然后更新桶中的水量和漏水时间戳等状态。
*/
private void leak() {
long now = System.currentTimeMillis();
long elapsedTime = now - lastLeakTimestamp;
long leakedWater = elapsedTime * rate / 1000;
if (leakedWater > 0) {
water = Math.max(0, water - leakedWater);
lastLeakTimestamp = now;
}
}
}
优缺点
- 突发流量无法处理
令牌桶算法
介绍
令牌桶算法是一种常用的限流算法,可以用于限制单位时间内请求的数量。该算法维护一个固定容量的令牌桶,每秒钟会向令牌桶中放入一定数量的令牌。当有请求到来时,如果令牌桶中有足够的令牌,则请求被允许通过并从令牌桶中消耗一个令牌,否则请求被拒绝。
优缺点
- 令牌桶算法具有较高的稳定性和精度,但实现相对复杂,适用于对稳定性和精度要求较高的场景。
参考
- 四种经典限流算法讲解