任务调度原理 通俗讲解详细(FreeRTOS)

news2024/11/18 21:44:29

寄存器说明

以cortex-M3,首先先要了解比较特别的几个寄存器:
r15 PC程序计数器(Program Counter),存储下一条要执行的指令的地址。
r14 LR连接寄存器(Link Register ),保存函数返回地址,当通过BL或BLX指令调用函数时,硬件自动将函数返回地址保存在R14寄存器中。当函数完成时,将LR值传到PC,即可返回到被调用位置。
r13 SP 堆栈指针(Process Stack Pointer),保护现场和恢复现场要用,当发生异常的时候,硬件会把当前状态(使用到寄存器数值)保存在堆栈中,SP保存这个堆栈指针,异常处理完成,通过SP出栈,恢复到异常前的状态,可以时MSP、PSP。
CPSR程序状态寄存器(current program status register),CPSR和其他寄存器不一样,其他寄存器是用来存放数据的,都是整个寄存器具有一个含义.而CPSR寄存器是按位起作用的,也就是说,它的每一位都有专门的含义。
函数形参被放在R0-R3中,超过4个参数值传递则放栈里。

双堆栈指针

双堆栈指针对于任务现场保护、恢复现场至关重要。

【双堆栈指针(MSP&PSP)】

  • Cortex-M3内核中有两个堆栈指针(MSP & PSP),但任何时刻只能使用到其中一个。
  • 复位后处于线程模式特权级,默认使用MSP。
  • 通过SP访问到的是正在使用的那个指针,可以通过MSR/MRS指令访问指定的堆栈指针。
  • 通过设置CONTROL寄存器的bit[1]选择使用哪个堆栈指针。CONTROL[1]=0选择主堆栈指针;CONTROL[1]=1选择进程堆栈指针。
  • Handler模式下,只允许使用主堆栈指针MSP;PSP一般用在线程模式,任务执行就是用到这个PSP;线程模式下可以使用MSP,也可以使用PSP。

对于裸机程序,一直使用MSP。对于有OS的程序,OS内核和中断使用MSP,而应用程序task则使用PSP。

那双堆栈指针的作用是什么?答案是为了隔离OS和应用程序,程序的运行少不了堆栈,因为我们CPU只有少量的通用寄存器,当我们使用的临时变量比较多得时候,就需要将这些临时变量存储到堆栈里,而堆栈的push和pop都是通过SP来实现的,所以通过MSP和PSP就能实现OS内核与应用程序的隔离,应用程序task用PSP,而OS用MSP,这样会非常安全。因为应用程序再怎么折腾也只是在自己的堆栈内折腾,不会影响内核OS。

MCU上电执行过程

向量表中的MSP初始值和复位向量:

CM3离开复位状态时,首先要做的是读取下面两个值(根据boot执行,硬件自动执行):

从地址0x0000 0000,取出MSP(主堆栈指针)的值 从地址0x0000 0004,取出复位向量(程序开始执行的地 址, LSB必须是1)

汇编启动文件,主要做了堆栈空间分配,更新MSP指针,跳到Reset_Handler执行,执行SystemInit并返回,再执行到__main,虽然会执行到main函数,但是这个__main和main函数是不一样,再跳到main函数时,还会做一些操作。

FreeRTOS调度过程

简单分析:
重点在于任务初始化、SVC、pendsv、systick

任务栈初始化
这个栈空间,就是我们任务初始化的内存空间,是一个全局数组。

栈顶指针
栈顶指针-1               状态寄存器XPSR
栈顶指针-2               任务线程函数指针 PC
栈顶指针-3               LR 函数返回地址
栈顶指针-8               R12、R3、R2、R1、R0
栈顶指针-16              R11、R10、R9、R8、R7、R6、R5、R4 

异常返回时,异常完成时,进行出栈,恢复先前压入栈的寄存器值xPSP, PC, LR,R12以及R3~R0寄存器的值,恢复堆栈指针值,根据栈指针。(这是由硬件去完成) 后面会用到。

进入SVC系统调用:
执行第一个任务,MSP地址更新(多余),进入SVC系统调用

__asm void prvStartFirstTask( void )
{
	PRESERVE8

	/* 在Cortex-M中,0xE000ED08是SCB_VTOR这个寄存器的地址,
       里面存放的是向量表的起始地址,即MSP的地址 MCU上电就做了,该步骤多余*/
	ldr r0, =0xE000ED08
	ldr r0, [r0]
	ldr r0, [r0]

	/* 设置主堆栈指针msp的值 */
	msr msp, r0
    
	/* 使能全局中断 */
	cpsie i
	cpsie f
	dsb
	isb
	
    /* 调用SVC去启动第一个任务 */
	svc 0  
	nop
	nop
}

执行SVC,跳到执行用户的第一个任务

__asm void vPortSVCHandler( void )
{
  /*在进入异常前 会将 把xPSP, PC, LR,R12以及R3~R0寄存器的值压入栈 ,由硬件完成
  因为这个函数是返回,这个可以不关心。
  */
    extern pxCurrentTCB;
    
    PRESERVE8

	ldr	r3, =pxCurrentTCB	/* 加载pxCurrentTCB的地址到r3 */
	ldr r1, [r3]			     /* 加载pxCurrentTCB到r1 */
	ldr r0, [r1]			 /* 加载pxCurrentTCB指向的值到r0,目前r0的值等于第一个任务堆栈的栈顶
	ldmia r0!, {r4-r11}		/* 以r0为基地址,将栈里面的内容加载到r4~r11寄存器,同时r0会递增 */
	msr psp, r0				/* 将r0的值,即任务的栈指针更新到psp 后面异常退出时,根据SPS进行出栈,                        就是前面任务栈初始化值出栈给到寄存器*/
	isb
	mov r0, #0              /* 设置r0的值为0 */
	msr	basepri, r0         /* 设置basepri寄存器的值为0,即所有的中断都没有被屏蔽 */
	orr r14, #0xd           /* 当从SVC中断服务退出前,通过向r14寄存器最后4位按位或上0x0D,
                               使得硬件在退出时使用进程堆栈指针PSP完成出栈操作并返回后进入线程模式、返回Thumb状态 */
    
	bx r14                  /* 异常返回,这个时候栈中的剩下内容将会自动加载到CPU寄存器:
                               xPSR,PC(任务入口地址),R14,R12,R3,R2,R1,R0(任务的形参)
                               同时PSP的值也将更新,即指向任务栈的栈顶 */
}

此时调度器就执行第一个任务。

任务切换

pendSV中断服务函数实现任务切换。
执行portYIELD,手动触发pendSV中断

#define portYIELD()																\
{																				\
	/* 触发PendSV,产生上下文切换 */								                \
	portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;								\
	__dsb( portSY_FULL_READ_WRITE );											\
	__isb( portSY_FULL_READ_WRITE );											\
}

pendSV

__asm void xPortPendSVHandler( void )
{
	extern pxCurrentTCB;
	extern vTaskSwitchContext;

	PRESERVE8

    /* 当进入PendSVC Handler时,上一个任务运行的环境即:
       xPSR,PC(任务入口地址),R14,R12,R3,R2,R1,R0(任务的形参)
       这些CPU寄存器的值会自动保存到任务的栈中,剩下的r4~r11需要手动保存 */
    /* 获取任务栈指针到r0 */
	mrs r0, psp
	isb

	ldr	r3, =pxCurrentTCB		/* 加载pxCurrentTCB的地址到r3 */
	ldr	r2, [r3]                /* 加载pxCurrentTCB到r2 */

	stmdb r0!, {r4-r11}			/* 将CPU寄存器r4~r11的值存储到r0指向的地址 */
	str r0, [r2]                /* 将任务栈的新的栈顶指针存储到当前任务TCB的第一个成员,即栈顶指针 */				
   //以上 上下文保存

	stmdb sp!, {r3, r14}        /* 将R3和R14临时压入堆栈,因为即将调用函数vTaskSwitchContext,
                                  调用函数时,返回地址自动保存到R14中,所以一旦调用发生,R14的值会被覆盖,因此需要入栈保护;
                                  R3保存的当前激活的任务TCB指针(pxCurrentTCB)地址,函数调用后会用到,因此也要入栈保护 */
	mov r0, #configMAX_SYSCALL_INTERRUPT_PRIORITY    /* 进入临界段 */
	msr basepri, r0
	dsb
	isb
	bl vTaskSwitchContext       /* 调用函数vTaskSwitchContext,寻找新的任务运行,通过使变量pxCurrentTCB指向新的任务来实现任务切换 */ 
	mov r0, #0                  /* 退出临界段 */
	msr basepri, r0
	ldmia sp!, {r3, r14}        /* 恢复r3和r14 */

	ldr r1, [r3]
	ldr r0, [r1] 				/* 当前激活的任务TCB第一项保存了任务堆栈的栈顶,现在栈顶值存入R0*/
	ldmia r0!, {r4-r11}			/* 出栈 */
	msr psp, r0
	isb
	bx r14          /* 异常发生时,R14中保存异常返回标志,包括返回后进入线程模式还是处理器模式、
                    使用PSP堆栈指针还是MSP堆栈指针,当调用 bx r14指令后,硬件会知道要从异常返回,
                    然后出栈,这个时候堆栈指针PSP已经指向了新任务堆栈的正确位置,
                    当新任务的运行地址被出栈到PC寄存器后,新的任务也会被执行。*/
	nop
}

参考资料:
[野火®]《FreeRTOS 内核实现与应用开发实战—基于STM32》
猪哥-嵌入式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/451444.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

记忆化搜索-滑雪

题意 给定一个 R 行 C 列的矩阵,表示一个矩形网格滑雪场。 矩阵中第 i 行第 j 列的点表示滑雪场的第 i 行第 j 列区域的高度。 一个人从滑雪场中的某个区域内出发,每次可以向上下左右任意一个方向滑动一个单位距离。 当然,一个人能够滑动到某…

论文笔记:基于U-Net深度学习网络的地震数据断层检测

0 论文简介 论文:基于U-Net深度学习网络的地震数据断层检测 发表:2021年发表在石油地球物理勘探 1 问题分析和主要解决思路 问题:断层智能识别,就是如何利用人工智能技术识别出断层。 解决思路:结合U-N…

nginx快速入门

本文应侧重操作应用,复杂原理详见相关理论类笔记 Nginx 快速入门笔记 Nginx 的简介 1. 什么是 nginx ​ Nginx 可以作为静态页面的 web 服务器,同时还支持 CGI 协议的动态语言,比如 perl、php等。但是不支持 java。Java 程序只能通过与 t…

tauri+rust 构建项目

文章目录 安装前依赖创建项目第一步第二步第三步最后一步 调试 昨天菜鸟尝试使用 taurirust 构建项目,按照网上的感觉都不是很全,所以这里菜鸟自己总结一下,主要是给自己今后学习 taurirust 使用的,当然也不知道会不会去学&#x…

全球医疗器械研发投入前十,这家中国公司领跑榜单

2023年,《医疗设计》杂志公布了最新一期百强榜,评选出了2022全球医疗器械行业最高研发支出和项目的十家公司。这些公司的每年研发支出超过收入的15%。尽管经济面临逆风,医疗器械行业的销售额却创下了新的历史高点,研发支出也加速增…

多通道振弦传感器无线采集仪 多类型数字传感器独立发送协议

多通道振弦传感器无线采集仪 多类型数字传感器独立发送协议 独立发送传感器数据时,每个传感器是一个独立的数据包,发送至预设的 TCP 服务器。 数据包字符串,结构说明如下: UDID>MDS传感器类型码第 x 个传感器>第 x 包/总 x …

K8s中内置的Prometheus 异常,不断重启的解决方案

要说明的一点是:此处理方式会进行数据的删除,并且多实例情况下最好都做下操作。多实例都操作一遍的意思就是比如我普罗米修斯有如下四个: 如果Prometheus-k8s-0一直重启,则不光需要操作Prometheus-k8s-0,也需要对它的…

VC++如何获取所有运行中的Word实例的COM对象

目录 一 问题的提出二 工程创建2.1 创建一个基于对话框的MFC工程2.2 导入word相关的自动化包装类 三 代码实例3.1 初始化COM库3.2 对话框类头文件修改3.3 对话框类实现文件1.根据进程名称获取进程ID2. 获取一个进程下所有的窗口3. 判断某个窗口是否为主窗口4. 判断word进程下面…

数字ic验证工程师经典笔试面试题(含答案)

数字ic验证工程师在找工作时,刷笔试面试题必不可少,在面试前做好充足的准备才能抓住更多的机会,今天小编为大家准备了数字ic验证工程师大厂面试常用笔试面试题。 下列关于代码覆盖率描述错误的是:CD A.代码覆盖率包括语句覆盖率…

用CD4051 实现八档位可变 / 可编程增益同相比例运放电路

CD4051 相当于一个单刀八掷的开关,一个公共端对应另一边八个档位,如下图。左边的Z 就是公共端的“单刀”,右边Y0 到Y7 是“八掷”,用A0、A1、A2 三位选择这八个档位。基于CD4051 的变增益电路实现的原理是一致的,只是细…

国际十大正规现货黄金交易平台排名(2023年优质版)

在现今这个时代,投资理财是在平常不过的了,但是在投资市场中黄金是最为热门的产品之一,而黄金投资市场中现货黄金因行情变化快、盈利机会多、多空双向交易机制而获得人们广泛喜爱和选择的主要理由,由于现货黄金的发展史起源于国外…

《PyTorch 深度学习实践》第12讲 循环神经网络(基础篇)

文章目录 1 什么是RNN?1.1 原理1.2 维度说明 2 一些琐碎代码2.1 RNNCell2.2 RNN2.3 RNN参数:batch_first 3 例子:序列变换把 "hello" --> "ohlol"3.1 使用RNNCell3.2 使用RNN3.3 使用embedding and linear layer嵌入&…

迅为iTOP4412精英版Visual Studio Code 插件安装

我们在此以 ubuntu 环境为例,讲解 Visual Studio Code 插件安装。 VSCode 支持多种语言,比如 C/C、Python、C#等等,对于嵌入式开发的我们主要用来编写 C/C程 序的,所以需要安装 C/C的扩展包,扩展包安装很简单&#x…

【 SpringBoot单元测试 和 Mybatis 增,删,改 操作 】

文章目录 一、Spring-Boot单元测试(了解)1.1 概念1.2 单元测试引用1.3 单元测试的实现1.4 简单的断言说明1.5 单元测试优点 二、Mybatis 增,删,改 操作2.1 增加⽤户操作2.2 修改⽤户操作2.3 删除⽤户操作 一、Spring-Boot单元测试(了解) 1.1 概念 单元测…

Java设计模式-day02

4,创建型模式 4.2 工厂模式 4.2.1 概述 需求:设计一个咖啡店点餐系统。 设计一个咖啡类(Coffee),并定义其两个子类(美式咖啡【AmericanCoffee】和拿铁咖啡【LatteCoffee】);再设…

找不到msvcp140d.dll vcruntime140d.dll ucrtbased.dll

找不到msvcp140d.dll vcruntime140d.dll ucrtbased.dll 找不到msvcp140d.dll vcruntime140d.dll ucrtbased.dll 找不到msvcp140d.dll vcruntime140d.dll ucrtbased.dll 链接:https://pan.baidu.com/s/15O9cRwexHp4nzZj8eYVfnw 提取码:4iyr --来自百度…

FPGA基于XDMA实现PCIE X8的HDMI视频采集 提供工程源码和QT上位机程序和技术支持

目录 1、前言2、我已有的PCIE方案3、PCIE理论4、总体设计思路和方案5、vivado工程详解6、驱动安装7、QT上位机软件8、上板调试验证9、福利:工程代码的获取 1、前言 PCIE(PCI Express)采用了目前业内流行的点对点串行连接,比起 PC…

No.044<软考>《(高项)备考大全》【第27章】运筹学计算(典型考题思路讲解)

【第27章】运筹学计算(典型考题思路讲解) 1 章节概述1.1 运筹学计算涉及到的题型2 最优的函数值3 线性规划题1题2题3 4 动态规划 投资收益最大的问题5 最小生成树题1题2题3 6 匈牙利法题1题2 7 最短最长路径问题题1题2题3题4题5题6题7 8 最大流量问题9 决…

Java-String类

文章目录 写在前面1 String类的常用方法1.1 字符串的构造1.2 String对象的比较1. 利用 比较是否引用同一对象2. 利用equals() 方法比较3. 利用compareTo 方法比较两个字符串的4.利用compareToIgnoreCase方法比较(忽略大小写) 1.3字符串查找1.4转化1. 数值和字符串的转化2. 大小…

关于java.io的学习记录(读取文本)

可以通过字节流(FileInputStream)、字符流(InputStreamReader)、字符缓冲流(BufferedReader)读取文本中的数据。 1、FileInputStream读取文本 public void read(){String path "fileTest.txt";F…