【JUC】Java并发机制的底层实现原理

news2024/11/18 1:46:36

【JUC】Java并发机制的底层实现原理

参考资料:

CPU 缓存一致性

《Java并发编程的艺术》

【JUC并发编程】CAS到底加不加锁?

如何写出让 CPU 跑得更快的代码?

彻底理解Java并发编程之Synchronized关键字实现原理剖析

【JUC并发编程】Synchronized锁升级

文章目录

  • 【JUC】Java并发机制的底层实现原理
    • 一:volatile的应用
      • 1.1、volatile的定义与实现原理
        • 1.1.1、两条实现原则
          • 1.1.1.1、Lock前缀指令会引起处理器缓存回写到内存
          • 1.1.1.2、一个处理器的缓存回写到内存会导致其他处理器的缓存无效
      • 1.2、volatile产生的问题
        • 1.2.1、嗅探
        • 1.2.2、总线风暴
      • 1.3、volatile的使用优化
        • 1.3.1、为什么追加64字节能够提高并发编程的效率呢?
    • 二:synchronized的实现原理与应用
      • 2.1、Java对象头
      • 2.2、锁的升级与对比
        • 2.2.1、偏向锁
          • 2.2.1.1、偏向锁的撤销
          • 2.2.1.2、关闭偏向锁
        • 2.2.2、轻量级锁
          • 2.2.2.1、轻量级锁加锁
          • 2.2.2.2、轻量级锁解锁
      • 2.3、锁的优缺点对比
    • 三:原子操作的实现原理
      • 3.1、术语定义
        • 3.1.1、cpu pipeline
        • 3.1.2、内存顺序冲突
      • 3.2、处理器如何实现原子操作
        • 3.2.1、使用总线锁保证原子性
        • 3.2.2、使用缓存锁保证原子性
      • 3.3、Java如何实现原子操作
        • 3.3.1、使用循环CAS实现原子操作
        • 3.3.2、CAS实现原子操作的三大问题
          • 3.3.2.1、ABA问题
          • 3.3.2.2、循环时间长开销大
          • 3.3.2.3、只能保证一个共享变量的原子操作
        • 3.3.3、使用锁机制实现原子操作
    • 四:小结

Java代码在编译后会变成Java字节码,字节码被类加载器加载到JVM里,JVM执行字节码,最终需要转化为汇编指令在CPU上执行,Java中所使用的并发机制依赖于JVM的实现和CPU的指令。

一:volatile的应用

在多线程并发编程中synchronizedvolatile都扮演着重要的角色,volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的“可见性”。可见性的意思是当一个线程修改一个共享变量时,另外一个线程能读到这个修改的值。如果volatile变量修饰符使用恰当的话,它比synchronized的使用和执行成本更低,因为它不会引起线程上下文的切换和调度。本文将深入分析在硬件层面上Intel处理器是如何实现volatile的,通过深入分析帮助我们正确地使用volatile变量。

1.1、volatile的定义与实现原理

Java语言规范第3版中对volatile的定义如下:Java编程语言允许线程访问共享变量,为了确保共享变量能被准确和一致地更新,线程应该确保通过排他锁单独获得这个变量。Java语言提供了volatile,在某些情况下比锁要更加方便。如果一个字段被声明成volatile,Java线程内存模型确保所有线程看到这个变量的值是一致的。

在了解volatile实现原理之前,我们先来看下与其实现原理相关的CPU术语与说明。

image-20230420172007408

volatile是如何来保证可见性的呢?让我们在X86处理器下通过工具获取JIT编译器生成的汇编指令来查看对volatile进行写操作时,CPU会做什么事情。

Java代码如下:

instance = new Singleton(); // instance是volatile变量

转变成汇编代码,如下:

0x01a3de1d: movb $0×0,0×1104800(%esi);0x01a3de24: lock addl $0×0,(%esp);

volatile变量修饰的共享变量进行写操作的时候会多出第二行汇编代码,通过查IA-32架构软件开发者手册可知,Lock前缀的指令在多核处理器下会引发了两件事情:

  • 将当前处理器缓存行的数据写回到系统内存。
  • 这个写回内存的操作会使在其他CPU里缓存了该内存地址的数据无效。

为了提高处理速度,处理器不直接和内存进行通信,而是先将系统内存的数据读到内部缓存(L1,L2或其他)后再进行操作,但操作完不知道何时会写到内存。如果对声明了volatile的变量进行写操作,JVM就会向处理器发送一条Lock前缀的指令,将这个变量所在缓存行的数据写回到系统内存。但是,就算写回到内存,如果其他处理器缓存的值还是旧的,再执行计算操作就会有问题。所以,在多处理器下,为了保证各个处理器的缓存是一致的,就会实现缓存一致性协议,每个处理器通过嗅探在总线上传播的数据来检查自己缓存的值是不是过期了,当处理器发现自己缓存行对应的内存地址被修改,就会将当前处理器的缓存行设置成无效状态,当处理器对这个数据进行修改操作的时候,会重新从系统内存中把数据读到处理器缓存里。

1.1.1、两条实现原则

下面来具体讲解volatile的两条实现原则:

1.1.1.1、Lock前缀指令会引起处理器缓存回写到内存

Lock前缀指令导致在执行指令期间,声言处理器的LOCK#信号。在多处理器环境中,LOCK#信号确保在声言该信号期间,处理器可以独占任何共享内存。

但是,在最近的处理器里,LOCK#信号一般不锁总线,而是锁缓存,毕竟锁总线开销的比较大。对于Intel486和Pentium处理器,在锁操作时,总是在总线上声言LOCK#信号。但在P6和目前的处理器中,如果访问的内存区域已经缓存在处理器内部,则不会声言LOCK#信号。相反,它会锁定这块内存区域的缓存并回写到内存,并使用缓存一致性机制来确保修改的原子性,此操作被称为“缓存锁定”,缓存一致性机制会阻止同时修改由两个以上处理器缓存的内存区域数据。

1.1.1.2、一个处理器的缓存回写到内存会导致其他处理器的缓存无效

IA-32处理器和Intel 64处理器使用MESI(修改、独占、共享、无效)控制协议去维护内部缓存和其他处理器缓存的一致性。在多核处理器系统中进行操作的时候,IA-32和Intel 64处理器能嗅探其他处理器访问系统内存和它们的内部缓存。处理器使用嗅探技术保证它的内部缓存、系统内存和其他处理器的缓存的数据在总线上保持一致。例如,在Pentium和P6 family处理器中,如果通过嗅探一个处理器来检测其他处理器打算写内存地址,而这个地址当前处于共享状态,那么正在嗅探的处理器将使它的缓存行无效,在下次访问相同内存地址时,强制执行缓存行填充。

1.2、volatile产生的问题

1.2.1、嗅探

每个处理器通过嗅探在总线上传播的数据来检查自己缓存的值是不是过期了,当处理器发现自己缓存行对应的内存地址被修改,就会将当前处理器的缓存行设置成无效状态,当处理器对这个数据进行修改操作的时候,会重新从系统内存中把数据读到处理器缓存里。

1.2.2、总线风暴

总线风暴是指在计算机系统中,当多个设备同时请求访问共享总线时,总线变得非常繁忙,导致整个系统性能下降的现象。这种现象通常发生在总线带宽较窄的情况下,当大量数据需要通过总线传输时,就会出现总线饱和的情况。总线风暴可能会导致整个系统崩溃或失去响应,因此在设计计算机系统时需要考虑避免总线风暴的发生,例如增加总线带宽、优化设备之间的通信协议等方式。

由于VolatileMESI缓存一致性协议,需要不断的从主内存嗅探和cas不断循环,无效交互会导致总线带宽达到峰值。

1.3、volatile的使用优化

著名的Java并发编程大师Doug lea在JDK 7的并发包里新增一个队列集合类Linked-TransferQueue,它在使用volatile变量时,用一种追加字节的方式来优化队列出队和入队的性能。LinkedTransferQueue的代码如下。

    /**
     * 队列中的头部节点
     */
    private transient final PaddedAtomicReference<QNode> head;
    /**
     * 队列中的尾部节点
     */
    private transient final PaddedAtomicReference<QNode> tail;

    static final class PaddedAtomicReference<T> extends AtomicReference T>

    {
        // 使用很多4个字节的引用追加到64个字节
        Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
        PaddedAtomicReference(T r) {
            super(r);
        }
     }

    public class AtomicReference<V> implements java.io.Serializable {
        private volatile V value;
        // 省略其他代码

追加字节能优化性能?

这种方式看起来很神奇,但如果深入理解处理器架构就能理解其中的奥秘。让我们先来看看LinkedTransferQueue这个类,它使用一个内部类类型来定义队列的头节点(head)和尾节点(tail),而这个内部类PaddedAtomicReference相对于父类AtomicReference只做了一件事情,就是将共享变量追加到64字节。我们可以来计算下,一个对象的引用占4个字节,它追加了15个变量(共占60个字节),再加上父类的value变量,一共64个字节。

1.3.1、为什么追加64字节能够提高并发编程的效率呢?

因为对于英特尔酷睿i7、酷睿、Atom和NetBurst,以及Core Solo和Pentium M处理器的L1、L2或L3缓存的高速缓存行是64个字节宽,不支持部分填充缓存行,这意味着,如果队列的头节点和尾节点都不足64字节的话,处理器会将它们都读到同一个高速缓存行中,在多处理器下每个处理器都会缓存同样的头、尾节点,**当一个处理器试图修改头节点时,会将整个缓存行锁定,那么在缓存一致性机制的作用下,会导致其他处理器不能访问自己高速缓存中的尾节点,而队列的入队和出队操作则需要不停修改头节点和尾节点,所以在多处理器的情况下将会严重影响到队列的入队和出队效率。**Doug lea使用追加到64字节的方式来填满高速缓冲区的缓存行,避免头节点和尾节点加载到同一个缓存行,使头、尾节点在修改时不会互相锁定。

此外,64字节是许多处理器缓存行的大小,因此按照这个大小对内存进行对齐操作,可以使处理器更有效地利用缓存,并减少访问内存所需的总线流量和延迟。这些优化措施可以提高程序的性能和并发能力。

那么是不是在使用volatile变量时都应该追加到64字节呢?

不是的。在两种场景下不应该使用这种方式。

  • 缓存行非64字节宽的处理器。

    如P6系列和奔腾处理器,它们的L1和L2高速缓存行是32个字节宽。

  • 共享变量不会被频繁地写。

    因为使用追加字节的方式需要处理器读取更多的字节到高速缓冲区,这本身就会带来一定的性能消耗,如果共享变量不被频繁写的话,锁的几率也非常小,就没必要通过追加字节的方式来避免相互锁定。

不过这种追加字节的方式在Java 7下可能不生效,因为Java 7变得更加智慧,它会淘汰或重新排列无用字段,需要使用其他追加字节的方式。

二:synchronized的实现原理与应用

在多线程并发编程中synchronized一直是元老级角色,很多人都会称呼它为重量级锁。但是,随着Java SE 1.6对synchronized进行了各种优化之后,有些情况下它就并不那么重了。本文详细介绍Java SE 1.6中为了减少获得锁和释放锁带来的性能消耗而引入的偏向锁和轻量级锁,以及锁的存储结构和升级过程。

先来看下利用synchronized实现同步的基础:Java中的每一个对象都可以作为锁。具体表现为以下3种形式。

  • 对于普通同步方法,锁是当前实例对象。
  • 对于静态同步方法,锁是当前类的Class对象。
  • 对于同步方法块,锁是Synchonized括号里配置的对象。

当一个线程试图访问同步代码块时,它首先必须得到锁,退出或抛出异常时必须释放锁。那么锁到底存在哪里呢?锁里面会存储什么信息呢?

从JVM规范中可以看到Synchonized在JVM里的实现原理,JVM基于进入和退出Monitor对象来实现方法同步和代码块同步,但两者的实现细节不一样。代码块同步是使用monitorenter和monitorexit指令实现的,而方法同步是使用另外一种方式实现的,细节在JVM规范里并没有详细说明。但是,方法的同步同样可以使用这两个指令来实现。

monitorenter指令是在编译后插入到同步代码块的开始位置,而monitorexit是插入到方法结束处和异常处,JVM要保证每个monitorenter必须有对应的monitorexit与之配对。任何对象都有一个monitor与之关联,当且一个monitor被持有后,它将处于锁定状态。线程执行到monitorenter指令时,将会尝试获取对象所对应的monitor的所有权,即尝试获得对象的锁。

2.1、Java对象头

synchronized用的锁是存在Java对象头里的。如果对象是数组类型,则虚拟机用3个字宽(Word)存储对象头,如果对象是非数组类型,则用2字宽存储对象头。

image-20230420192054684

Java对象头里的Mark Word里默认存储对象的HashCode、分代年龄和锁标记位。32位JVM的Mark Word的默认存储结构如图所示。

image-20230420192555479

在运行期间,Mark Word里存储的数据会随着锁标志位的变化而变化。Mark Word可能变化为存储以下4种数据,如图所示。

image-20230420192634125

在64位虚拟机下,Mark Word是64bit大小的,其存储结构如图所示。

image-20230420192655722

2.2、锁的升级与对比

Java SE 1.6为了减少获得锁和释放锁带来的性能消耗,引入了“偏向锁”和“轻量级锁”,在Java SE 1.6中,锁一共有4种状态,级别从低到高依次是:无锁状态、偏向锁状态、轻量级锁状态和重量级锁状态,这几个状态会随着竞争情况逐渐升级。锁可以升级但不能降级,意味着偏向锁升级成轻量级锁后不能降级成偏向锁。这种锁升级却不能降级的策略,目的是为了提高获得锁和释放锁的效率。

2.2.1、偏向锁

HotSpot的作者经过研究发现,大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得,为了让线程获得锁的代价更低而引入了偏向锁。当一个线程访问同步块并获取锁时,会在对象头和栈帧中的锁记录里存储锁偏向的线程ID,以后该线程在进入和退出同步块时不需要进行CAS操作来加锁和解锁,只需简单地测试一下对象头的Mark Word里是否存储着指向当前线程的偏向锁。如果测试成功,表示线程已经获得了锁。如果测试失败,则需要再测试一下Mark Word中偏向锁的标识是否设置成1(表示当前是偏向锁):如果没有设置,则使用CAS竞争锁;如果设置了,则尝试使用CAS将对象头的偏向锁指向当前线程。

2.2.1.1、偏向锁的撤销

偏向锁使用了一种等到竞争出现才释放锁的机制,所以当其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁。偏向锁的撤销,需要等待全局安全点(在这个时间点上没有正在执行的字节码)。它会首先暂停拥有偏向锁的线程,然后检查持有偏向锁的线程是否活着,如果线程不处于活动状态,则将对象头设置成无锁状态;如果线程仍然活着,拥有偏向锁的栈会被执行,遍历偏向对象的锁记录,栈中的锁记录和对象头的Mark Word要么重新偏向于其他线程,要么恢复到无锁或者标记对象不适合作为偏向锁,最后唤醒暂停的线程。

image-20230420193304874

2.2.1.2、关闭偏向锁

偏向锁在Java 6和Java 7里是默认启用的,但是它在应用程序启动几秒钟之后才激活,如有必要可以使用JVM参数来关闭延迟:-XX:BiasedLockingStartupDelay=0。如果你确定应用程序里所有的锁通常情况下处于竞争状态,可以通过JVM参数关闭偏向锁:-XX:-UseBiasedLocking=false,那么程序默认会进入轻量级锁状态。

2.2.2、轻量级锁

2.2.2.1、轻量级锁加锁

线程在执行同步块之前,JVM会先在当前线程的栈桢中创建用于存储锁记录的空间,并将对象头中的Mark Word复制到锁记录中,官方称为Displaced Mark Word。然后线程尝试使用CAS将对象头中的MarkWord替换为指向锁记录的指针。如果成功,当前线程获得锁,如果失败,表示其他线程竞争锁,当前线程便尝试使用自旋来获取锁。

2.2.2.2、轻量级锁解锁

轻量级解锁时,会使用原子的CAS操作将Displaced Mark Word替换回到对象头,如果成功,则表示没有竞争发生。如果失败,表示当前锁存在竞争,锁就会膨胀成重量级锁。图2-2是两个线程同时争夺锁,导致锁膨胀的流程图。

image-20230420193435815

因为自旋会消耗CPU,为了避免无用的自旋(比如获得锁的线程被阻塞住了),一旦锁升级成重量级锁,就不会再恢复到轻量级锁状态。当锁处于这个状态下,其他线程试图获取锁时,都会被阻塞住,当持有锁的线程释放锁之后会唤醒这些线程,被唤醒的线程就会进行新一轮的夺锁之争。

2.3、锁的优缺点对比

锁的优缺点的对比

image-20230420193527886

三:原子操作的实现原理

原子(atomic)本意是“不能被进一步分割的最小粒子”,而原子操作(atomic operation)意为“不可被中断的一个或一系列操作”。在多处理器上实现原子操作就变得有点复杂。让我们一起来聊一聊在Intel处理器和Java里是如何实现原子操作的。

3.1、术语定义

在了解原子操作的实现原理前,先要了解一下相关的术语,如图所示。

image-20230420193625063

3.1.1、cpu pipeline

CPU流水线(CPU Pipeline)是一种计算机技术,用来提高CPU的执行效率。它将指令的执行过程分解成若干个步骤,并在同一个时钟周期内同时执行多条指令的不同阶段,从而使CPU在同一时刻能够处理多条指令,提高了CPU的工作效率。

具体地说,CPU流水线将指令的执行过程分为多个阶段,每个阶段可以独立执行,并且在同一时间,不同指令处于不同的执行阶段。这样,在任意时刻,CPU都可以处理多个指令,从而提高了大量程序的执行速度。

例如,假设CPU有3个执行阶段:取指令、译码和执行,当第一条指令的“取指令”阶段结束后,CPU就可以马上开始执行第二条指令的“取指令”阶段,这样就可以同时执行多条指令的不同阶段,使得整个执行过程更加高效。

3.1.2、内存顺序冲突

内存顺序冲突(Memory Order Violation)指的是在多线程程序中,不同线程访问共享内存时可能会出现的一种问题。当一个线程对共享内存进行了写操作但尚未完成时,另一个线程对同一块内存进行读操作,就可能导致数据不一致。

具体来说,如果两个线程同时对同一块内存进行访问,其中一个线程进行了写操作,另一个线程进行了读操作,那么就会发生内存顺序冲突。在这种情况下,由于线程之间的执行顺序不确定,可能会导致读取的值与预期不符合,从而导致程序的运行结果出现错误。

为了避免内存顺序冲突,通常需要使用同步机制来确保多个线程对共享内存的访问按照特定的顺序进行,例如使用互斥锁或原子操作等。这样可以保证每个线程只能在前面的操作完成后才能继续执行后面的操作,从而避免了内存顺序冲突的问题。

3.2、处理器如何实现原子操作

32位IA-32处理器使用基于对缓存加锁或总线加锁的方式来实现多处理器之间的原子操作。首先处理器会自动保证基本的内存操作的原子性。处理器保证从系统内存中读取或者写入一个字节是原子的,意思是当一个处理器读取一个字节时,其他处理器不能访问这个字节的内存地址。Pentium 6和最新的处理器能自动保证单处理器对同一个缓存行里进行16/32/64位的操作是原子的,但是复杂的内存操作处理器是不能自动保证其原子性的,比如跨总线宽度、跨多个缓存行和跨页表的访问。但是,处理器提供总线锁定和缓存锁定两个机制来保证复杂内存操作的原子性。

3.2.1、使用总线锁保证原子性

第一个机制是通过总线锁保证原子性。如果多个处理器同时对共享变量进行读改写操作(i++就是经典的读改写操作),那么共享变量就会被多个处理器同时进行操作,这样读改写操作就不是原子的,操作完之后共享变量的值会和期望的不一致。举个例子,如果i=1,我们进行两次i++操作,我们期望的结果是3,但是有可能结果是2。

原因可能是多个处理器同时从各自的缓存中读取变量i,分别进行加1操作,然后分别写入系统内存中。那么,想要保证读改写共享变量的操作是原子的,就必须保证CPU1读改写共享变量的时候,CPU2不能操作缓存了该共享变量内存地址的缓存。

处理器使用总线锁就是来解决这个问题的。所谓总线锁就是使用处理器提供的一个LOCK#信号,当一个处理器在总线上输出此信号时,其他处理器的请求将被阻塞住,那么该处理器可以独占共享内存。

3.2.2、使用缓存锁保证原子性

第二个机制是通过缓存锁定来保证原子性。在同一时刻,我们只需保证对某个内存地址的操作是原子性即可,但总线锁定把CPU和内存之间的通信锁住了,这使得锁定期间,其他处理器不能操作其他内存地址的数据,所以总线锁定的开销比较大,目前处理器在某些场合下使用缓存锁定代替总线锁定来进行优化。

频繁使用的内存会缓存在处理器的L1、L2和L3高速缓存里,那么原子操作就可以直接在处理器内部缓存中进行,并不需要声明总线锁,在Pentium 6和目前的处理器中可以使用“缓存锁定”的方式来实现复杂的原子性。所谓“缓存锁定”是指内存区域如果被缓存在处理器的缓存行中,并且在Lock操作期间被锁定,那么当它执行锁操作回写到内存时,处理器不在总线上声言LOCK#信号,而是修改内部的内存地址,并允许它的缓存一致性机制来保证操作的原子性,因为缓存一致性机制会阻止同时修改由两个以上处理器缓存的内存区域数据,当其他处理器回写已被锁定的缓存行的数据时,会使缓存行无效,当CPU1修改缓存行中的i时使用了缓存锁定,那么CPU2就不能同时缓存i的缓存行。

但是有两种情况下处理器不会使用缓存锁定。

  • 第一种情况是:当操作的数据不能被缓存在处理器内部,或操作的数据跨多个缓存行(cache line)时,则处理器会调用总线锁定。
  • 第二种情况是:有些处理器不支持缓存锁定。对于Intel 486和Pentium处理器,就算锁定的内存区域在处理器的缓存行中也会调用总线锁定。

针对以上两个机制,我们通过Intel处理器提供了很多Lock前缀的指令来实现。例如,位测试和修改指令:BTS、BTR、BTC;交换指令XADD、CMPXCHG,以及其他一些操作数和逻辑指令(如ADD、OR)等,被这些指令操作的内存区域就会加锁,导致其他处理器不能同时访问它。

3.3、Java如何实现原子操作

在Java中可以通过锁和循环CAS的方式来实现原子操作。

3.3.1、使用循环CAS实现原子操作

JVM中的CAS操作正是利用了处理器提供的CMPXCHG指令实现的。自旋CAS实现的基本思路就是循环进行CAS操作直到成功为止,以下代码实现了一个基于CAS线程安全的计数器方法safeCount和一个非线程安全的计数器count。

    private AtomicInteger atomicI = new AtomicInteger(0);
    private int i = 0;

    public static void main(String[] args) {
        final Counter cas = new Counter();
        List<Thread> ts = new ArrayList<Thread>(600);
        long start = System.currentTimeMillis();
        for (int j = 0; j < 100; j++) {
            Thread t = new Thread(new Runnable() {
                @Override
                public void run() {
                    for (int i = 0; i < 10000; i++) {
                        cas.count();
                        cas.safeCount();
                    }
                }
            });
            ts.add(t);
        }
        for (Thread t : ts) {
            t.start();
        }
// 等待所有线程执行完成
        for (Thread t : ts) {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        System.out.println(cas.i);
        System.out.println(cas.atomicI.get());
        System.out.println(System.currentTimeMillis() - start);
    }

    /**
     * 使用CAS实现线程安全计数器
     */
    private void safeCount() {
        for (; ; ) {
            int i = atomicI.get();
            boolean suc = atomicI.compareAndSet(i, ++i);
            if (suc) {
                break;
            }
        }
    }

    /**
     * 非线程安全计数器
     */
    private void count() {
        i++;
    }

从Java 1.5开始,JDK的并发包里提供了一些类来支持原子操作,如AtomicBoolean(用原子方式更新的boolean值)、AtomicInteger(用原子方式更新的int值)和AtomicLong(用原子方式更新的long值)。这些原子包装类还提供了有用的工具方法,比如以原子的方式将当前值自增1和自减1。

3.3.2、CAS实现原子操作的三大问题

在Java并发包中有一些并发框架也使用了自旋CAS的方式来实现原子操作,比如LinkedTransferQueue类的Xfer方法。CAS虽然很高效地解决了原子操作,但是CAS仍然存在三大问题。ABA问题,循环时间长开销大,以及只能保证一个共享变量的原子操作。

3.3.2.1、ABA问题

因为CAS需要在操作值的时候,检查值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是A,变成了B,又变成了A,那么使用CAS进行检查时会发现它的值没有发生变化,但是实际上却变化了。ABA问题的解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加1,那么A→B→A就会变成1A→2B→3A。从Java 1.5开始,JDK的Atomic包里提供了一个类AtomicStampedReference来解决ABA问题。这个类的compareAndSet方法的作用是首先检查当前引用是否等于预期引用,并且检查当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。

    public boolean compareAndSet(
            V expectedReference, // 预期引用
            V newReference, // 更新后的引用
            int expectedStamp, // 预期标志
            int newStamp // 更新后的标志
    )
3.3.2.2、循环时间长开销大

自旋CAS如果长时间不成功,会给CPU带来非常大的执行开销。如果JVM能支持处理器提供的pause指令,那么效率会有一定的提升。pause指令有两个作用:第一,它可以延迟流水线执行指令(de-pipeline),使CPU不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零;第二,它可以避免在退出循环的时候因内存顺序冲突(Memory Order Violation)而引起CPU流水线被清空(CPU Pipeline Flush),从而提高CPU的执行效率。

3.3.2.3、只能保证一个共享变量的原子操作

当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候就可以用锁。还有一个取巧的办法,就是把多个共享变量合并成一个共享变量来操作。比如,有两个共享变量i=2,j=a,合并一下ij=2a,然后用CAS来操作ij。从Java 1.5开始,JDK提供了AtomicReference类来保证引用对象之间的原子性,就可以把多个变量放在一个对象里来进行CAS操作。

3.3.3、使用锁机制实现原子操作

锁机制保证了只有获得锁的线程才能够操作锁定的内存区域。JVM内部实现了很多种锁机制,有偏向锁、轻量级锁和互斥锁。有意思的是除了偏向锁,JVM实现锁的方式都用了循环CAS,即当一个线程想进入同步块的时候使用循环CAS的方式来获取锁,当它退出同步块的时候使用循环CAS释放锁。

四:小结

本文我们一起研究了volatile、synchronized和原子操作的实现原理。Java中的大部分容器和框架都依赖于本章介绍的volatile和原子操作的实现原理,了解这些原理对我们进行并发编程会更有帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/442055.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

线程安全版本的单例设计模式 与 生产者消费者模型简介

目录 单例设计模式 单例设计模式——饿汉式 单例设计模式——懒汉式 单例设计模式——懒汉式&#xff08;优化步骤&#xff09; 生产者消费者模型 介绍 优点 补充&#xff1a;关于阻塞队列 单例设计模式 单例设计模式能够保证某个类的实例在程序运行过程中始终都只会存…

代码随想录Day57

1143.最长公共子序列 给定两个字符串 text1 和 text2&#xff0c;返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 &#xff0c;返回 0 。 一个字符串的 子序列 是指这样一个新的字符串&#xff1a;它是由原字符串在不改变字符的相对顺序的情况下删除某些字…

Cesium 实战-最新版(1.104.0)通过异步方式初始化地球,加载影像以及高程图层

Cesium 实战-最新版&#xff08;1.104.0&#xff09;通过异步方式初始化地球&#xff0c;加载影像以及高程图层 遇到问题初始化底图初始化高程&#xff08;监听载入完成事件&#xff0c;开启关闭高程&#xff09;初始化 3dtile Cesium 最新版&#xff08;1.104.0&#xff09;变…

2021地理设计组二等奖:基于地理大数据的南昌中心城区空间功能感知与分区

一、设计背景及意义 随着经济快速发展&#xff0c;城市功能类型也越来越多&#xff0c;在空间上逐渐聚集和演化&#xff0c;形成了居住区&#xff0c;商业区等城市功能区&#xff0c;而这些功能区没有明显边界&#xff0c;确定困难&#xff0c;如使用传统人力调查方法费时费力…

PHP快速入门16-用curl发起POST和GET的请求

文章目录 前言curl介绍发送GET请求发送POST请求其他选项 总结 前言 本文已收录于PHP全栈系列专栏&#xff1a;PHP快速入门与实战 在Web开发中&#xff0c;经常需要与其他服务器进行数据交互。而现在&#xff0c;绝大多数的接口都是基于HTTP协议的&#xff0c;因此我们需要学会…

Spring MVC的功能

1. 连接功能 1.1几种注解 RequestMapping最常用的注解之一&#xff0c;作用是用来路由注册&#xff08;注册接口的路由映射&#xff09;&#xff0c;即可修饰类也能修饰方法&#xff0c;默认情况下的RequestMapping即可接收Get请求也可以接收Post请求。也可以通过设置method来…

数据通信基础 - 数字传输系统(T1、E1)

文章目录 1 概述2 载波标准&#xff08;E1、T1&#xff09;2.1 T12.2 E1 3 扩展3.1 网工软考真题 1 概述 2 载波标准&#xff08;E1、T1&#xff09; 名称速率 Mbps信道个数每个语音信道的数据速率使用国家T11.5442456Kb/s美国、日本E12.0483264Kb/s欧洲、中国 2.1 T1 语音信…

5g网络变压器的特点与优势分析

5g网络变压器的特点与优势分析 5G网络变压器相比于2.5G和3G网络变压器&#xff0c;具有以下的特点和优势&#xff1a; 更高的频率&#xff1a;5G网络变压器可以支持更高的频率&#xff0c;从而实现更高的数据传输速率和更低的延迟。 更小的尺寸&#xff1a;5G网络变压器采用了…

为什么越来越多的网站选择海外主机?探究原因!

主机已成为网站托管的常用方式&#xff0c;但近年来越来越多的网站选择海外主机。这是为什么呢?在本文中&#xff0c;我们将探究海外主机的优点&#xff0c;并解释为什么越来越多的网站选择它们。 一、海外主机的优点 1、成本更低 海外主机的成本比独立主机低&#xff0c;因为…

文件系统和日志分析

文件系统 文件是存储在硬盘上的&#xff0c;硬盘的最小存储单位叫做"扇区”(sector)每个扇区存储512字节。一般连续八个扇区组成一个"块"(block)&#xff0c;一个块是4K大小&#xff0c;是文件存取的最小单位。操作系统读取硬盘的时候&#xff0c;是一次性连续…

哪个牌子手持洗拖一机好?热门洗地机盘点

在家居清洁中&#xff0c;越来越多的家庭选择了通过智能清洁家电来完成地面的清洁工作&#xff0c;其中洗地机时最受大家青睐的清洁工具&#xff0c;它不仅可以提高我们的清洁效率&#xff0c;还可以减轻清洁时的劳动强度。不过&#xff0c;不同品牌之间的产品的差距也是大有不…

MobPush Android SDK 集成指南

开发工具&#xff1a;Android Studio 集成方式&#xff1a;Gradle在线集成 安卓版本支持&#xff1a;minSdkVersion 19 集成准备 注册账号 使用PushSDK之前&#xff0c;需要先在MobTech官网注册开发者账号&#xff0c;并获取MobTech提供的AppKey和AppSecret&#xff0c;详情可…

世界大学机械工程TOP10,国内大学哪家强?

就在前不久世界大学的排名已经发布&#xff0c;机械工程学科是工科类学科当中代表学科之一&#xff0c;相信很多小伙伴是非常想要了解的。那么&#xff0c;我给大家介绍一下2023年QS世界大学&#xff08;机械工程&#xff09;学科排名。 本次排名比较分析了包括世界93个地区的…

智能洗地机哪个牌子更好用?好用不贵的洗地机推荐

近年来&#xff0c;智能家居产品越来越多&#xff0c;从一开始的扫地机器人到吸尘器再到后来的蒸汽拖把再到现在的洗地机&#xff0c;这些智能化清洁工具&#xff0c;不仅为我们节省了清洁的时间还拥有很好的清洁效果。其中洗地机是近年来最受大家青睐的清洁工具&#xff0c;那…

【Vulnhub】之symfonos1

一、 部署方法 在官网上下载靶机ova环境&#xff1a;https://download.vulnhub.com/symfonos/symfonos1.7z使用VMware搭建靶机环境攻击机使用VMware上搭建的kali靶机和攻击机之间使用NAT模式&#xff0c;保证靶机和攻击机放置于同一网段中。 二、 靶机下载安装 靶机下载与安…

电阻的选型

记点、 NOTE:通用的元器件选型步骤&#xff1a; A&#xff1a;明晰元器件的关机参数 B&#xff1a;结合具体的应用确定跟该应用最直接关联的关键参数 1、电阻的关键参数 2、电阻在电路的作用&#xff1a; 主要是用来是用来稳定和调节电流和电压。可作为分流器和分压器。也可…

ubuntu22.04安装nvidia驱动

ubuntu22.04安装nvidia驱动 环境前言直通显卡ubuntu2204虚拟机配置禁用默认显卡驱动安装显卡驱动查看显卡状态参考文章 环境 ESXi-7.0U3l ubuntu22.04 前言 在第一次成功之后&#xff0c;重启了虚拟机&#xff0c;失败了很多次&#xff0c;重装了n次系统和驱动&#xff0c;但…

452. 用最少数量的箭引爆气球

有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points &#xff0c;其中points[i] [xstart, xend] 表示水平直径在 xstart 和 xend之间的气球。你不知道气球的确切 y 坐标。 一支弓箭可以沿着 x 轴从不同点 完全垂直 地射出。在坐标 x 处射出一…

DAX:概述ALL函数

简单的说&#xff0c;当ALL用作表函数时&#xff0c;忽略应用到表上的任何过滤器&#xff0c;并返回数据表&#xff1b;当ALL用作CALCULATE和CALCULATETABLE函数中修饰器时&#xff0c;ALL函数从扩展表中移除已经应用的过滤上下文。 注意自动存在(auto-eixist)对ALL()函数的影响…

前后端目前进展

进展 前端第一个vue2第二个vue2&#xff08;用来复盘结果报错&#xff09;第三个vue2 后端第一个django&#xff08;本地&#xff09;第二个django&#xff08;GPU&#xff09; 前后端连接 前端 (前端创建方式/流程详细见我的博客vue2创建) 第一个vue2 项目名&#xff1a;te…