如何在自定义数据集上训练YOLOv8的各个模型

news2024/11/14 14:51:24

YOLOv8效果图(可以应用到图片和视频):

在这里插入图片描述

在这里插入图片描述

四个模式命令

yolo task=detect mode=predict model='model/yolov8n.pt' source='input/test.mp4' show=True

yolo task=segment mode=predict model='model/yolov8x-seg.pt' source='input/zidane.jpg' show=True

yolo task=classify mode=predict model='model/yolov8n-cls.pt' source='input/test.mp4' show=True

yolo task=pose mode=predict model='model/yolov8n-pose.pt' source='input/test.mp4' show=True

#调用摄像头进行检测
yolo task=detect mode=predict model='model/yolov8n.pt' source=0 show=True

model=yolov8n.pt替换为自己的权重,如果本地没有,就会自动去下载预训练权重,source替换为自己的图片或者视频,task可以修改为其他三种模式。

yolo发展历程:

在这里插入图片描述

YOLOv8 vs YOLOv7 vs YOLOv6 vs YOLOv5

在这里插入图片描述

YOLOv8的出品公司还是Ultralytics,也就是发布YOLOv5和YOLOv3的那家。

在这里插入图片描述

本次的升级主要包括:

  • 用户友好的API(命令行+Python)
  • 更快更准确(由于正式的论文还没发表,它和SOTA模型的具体对比数据现在还没有)
  • 同时支持目标检测、实例分割和图像分类三种任务
  • 可扩展到以前所有的版本
  • 新的backbone网络(CSP结构不变,但C2f模块替换了C3模块,每个stage的blocks数改为[3,6,6,3]等)
  • 新的Anchor-Freehead
  • 新的损失函数

首先,YOLOv8的开发者脱离了标准YOLO项目的设计,将train.py、detect.py、val.py、export.py这四个脚本进行了分离。

短期来看,这种改变可能会引起混乱,因为它从YOLOv3就一直没有变过;但原来这种看起来就好理解的模式在实时处理和跟踪场景中进行部署实在是比较麻烦。所以还是改用了更加灵活的新设计,让YOLOv8可以通过终端独立使用。

其次,这次新增的CLI可以让你在各种任务和版本上进行更加方便的模型训练、验证或推理。在终端的操作方式与我们熟悉的脚本非常相似,比如利用CLI检测给定图像中的对象,这样就行:

yolo task=detect \
mode=predict \
model=yolov8n.pt \
conf=0.25 \
source='https://media.roboflow.com/notebooks/examples/dog.jpeg'

在这里插入图片描述

最后,Ultralytics YOLO这次配备的Pythonic模型和训练接口,让我们用6行代码就能在自定义Python脚本中用上YOLO模型,操作方式就像这样:

from ultralytics import YOLO
model = YOLO('yolov8n.pt')
model.predict( source='https://media.roboflow.com/notebooks/examples/dog.jpeg', conf=0.25)

在自定义数据集上训练YOLOv8

1、首先,安装YOLOv8

pip install ultralytics(推荐)

或者

git clone https://github.com/ultralytics/ultralytics>cd ultralytics>pip install -e ultralytics

2、然后开始构建自定义数据集。

为了不让这个过程那么痛苦和耗时,我们可以用上Roboflow这个工具,操作步骤如下:

(1)创建账户,新建项目,项目类型选择“目标检测(Object Detection)”。
在这里插入图片描述

在这里插入图片描述

(2)上传图片将数据集导入到项目之中。如果你没有准备数据集,可以用它们官方提供的(从Roboflow Universe中下载)。
在这里插入图片描述

如果你的图片已经带标注,系统可以自动读取;如果没有,可以用它提供的这个非常快捷的标注工具现标。

在这里插入图片描述

(3)然后就能生成数据集了。“预处理”和“数据增强”两个选项可以勾上,让你的模型鲁棒性更强。

在这里插入图片描述

(4)现在我们就拥有了自己的一个托管数据集,将它导出就能直接加载到电脑中进行训练了。

记住从Roboflow Universe中下载数据集时选择“YOLO v5 PyTorch”格式,然后在弹出的窗口中看到一段代码,简单修改各个参数即可。

from roboflow import Roboflow

rf = Roboflow(api_key='YOUR_API_KEY')
project = rf.workspace('WORKSPACE').project('PROJECT')
dataset = project.version(1).download('yolov8')

在这里插入图片描述

3、开始训练

使用下面的命令将数据集下载片段(snippet)粘贴到你的YOLOv8 Colab notebook中,开始训练。

yolo task=detect \
mode=train \
model=yolov8s.pt \
data={dataset.location}/data.yaml \
epochs=100 \
imgsz=640

取决于数据集大小和训练方法,过程将持续几分钟或几小时。

以下是上述足球数据集的训练结果:

(1)返回的混淆矩阵;

在这里插入图片描述

(2)跟踪的关键指标;

在这里插入图片描述

(3)验证batch上的推理示例。

在这里插入图片描述

4、用测试集验证模型

训练好后开始验证。创建数据集时分成三部分,其中一部分用来当测试集:

yolo task=detect \
mode=val \
model={HOME}/runs/detect/train/weights/best.pt \
data={dataset.location}/data.yaml

评估结果如下:

在这里插入图片描述

5、使用自定义模型进行预测

命令如下:

yolo task=detect \
mode=predict \
model={HOME}/runs/detect/train/weights/best.pt \
conf=0.25 \
source={dataset.location}/test/images

结果示例:

在这里插入图片描述

6、最后一步:导出和上传权重

现在我们拥有了一组训练好的权重,可用于托管API端点,就在项目的/runs/detect/train/weights/best.pt文件夹中。

当然,也可以使用Roboflow pip包中的Deploy()函数将它上传到Roboflow Deploy中,方便自己和他人共享。

在这里插入图片描述

单击Roboflow仪表板侧栏中的“部署(Deploy)”,查看可用的选项,然后就能直接在浏览器中测试你的模型了。要共享给他人,发送一个URL就行。

测试素材可以直接用你测试集里的图片,也可以上传新的图片或视频,或者粘贴YouTube链接、直接用摄像头。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/440765.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaSE-part2

文章目录 Day07 IO流1.IO流1.1背景介绍1.2File类1.2.1常用方法 1.3IO流原理1.4IO流的分类1.4.1InputStream 字节输入流1.4.1.1FileInputStream1.4.1.2FileOutPutStream1.4.1.3练习 1.4.2Reader and Writer1.4.2.1FileReader1.4.2.2FileWriter 1.4.3节点流和处理流1.4.3.1处理流…

MSNet网络结构与代码搭建深入解读

模型结构 1、首先,将多光谱遥感图像的波段分为可见光和不可见光两组,然后进行分组同步特征提取; 代码 先看总体结构,主代码 __init__定义了声明MSNet模型有哪些类,MSNet的forward方法规定数据如何在层之间流动。 1、首先是获得图片的输入尺寸input_size = (rgbnnd.size(…

Python数据结构与算法-动态规划(钢条切割问题)

一、动态规划(DP)介绍 1、从斐波那契数列看动态规划 (1)问题 斐波那契数列递推式: 练习:使用递归和非递归的方法来求解斐波那契数列的第n项 (2)递归方法的代码实现 import time # 递…

Spark----RDD(弹性分布式数据集)

RDD 文章目录 RDDRDD是什么?为什么需要RDD?RDD的五大属性WordCount中的RDD的五大属性如何创建RDD?RDD的操作两种基本算子/操作/方法/API分区操作重分区操作聚合操作四个有key函数的区别 关联操作排序操作 RDD的缓存/持久化cache和persistchec…

Java学习-MySQL-DQL数据查询-联表查询JOIN

Java学习-MySQL-DQL数据查询-联表查询JOIN 1.分析需求,查找那些字段 2.分析查询的字段来自哪些表 3.确定使用哪种连接查询 4.确定交叉点 5.确定判断条件 操作描述inner join返回左右表的交集left join返回左表,即使右表没有right join返回右表&#xf…

iptables深度总结--基础篇

iptables 五表五链 链:INPUT OUTPUT FORWARD PREROUTING POSTROUTING 表:filter、nat、mangle、raw、security 数据报文刚进网卡,还没有到路由表的时候,先进行了prerouting,进入到路由表,通过目标地址判…

FFMPEG 关于smaple_fmts的理解及ffplay播放PCM

问题 当我将一个aac的音频文件解码为原始的PCM数据后,使用ffplay播放测试是否成功时,需要提供给ffplay 采样率,通道数,PCM的格式类型 3个参数,否则无法播放! 所以使用ffprobe 查看原来的aac文件信息&…

Python手写板 画图板 签名工具

程序示例精选 Python手写板 画图板 签名工具 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对<<Python手写板 画图板 签名工具>>编写代码&#xff0c;代码整洁&#xff0c;规则&am…

别再回答面试官,toFixed采用的是四舍五入啦!

四舍五入大家都知道&#xff0c;但你知道银行家舍入法么&#xff1f;你知道JS里的toFixed实现用的是哪种吗&#xff1f; 前两天我写了篇《0.1 0.2 不等于 0.3&#xff1f;原来是因为这个》&#xff0c;大概就是说&#xff0c;0.1 0.2不等于0.3是因为浮点数精度问题。 结果在…

LinkedList 的特点及优缺点

现在来讲 LinkedList LinkedList 是链表集合&#xff0c;基于链表去存储数据&#xff0c;每一个数据视作一个节点 private static class Node<E> {// 存放的数据E item;// 下一个节点Node<E> next;// 上一个节点Node<E> prev;Node(Node<E> prev, E ele…

【unity实战】2D横版实现人物移动跳跃2——用对象池设计制作冲锋残影的效果(包含源码)

基于上一篇人物移动二段跳进一步优化完善 先看看最终效果 什么是对象池? 在Unity中,对象池是一种重复使用游戏对象的技术。使用对象池的好处是可以减少游戏对象的创建和销毁,从而提高游戏的性能。如果不使用对象池,每次需要创建游戏对象时,都需要调用Unity的Instantiate函…

国内几大技术网站,你最爱和哪个玩耍?

所谓“物以类聚&#xff0c;人以群分” 所谓“士为知己者死&#xff0c;女为悦己者容” 所谓“世上的乌鸦都一般黑&#xff0c;鸽子却各有各的白” CSDN&#xff0c;掘金&#xff0c;博客园等&#xff0c;说起来都是“技术”社区&#xff0c;每个却都有着不同的姿色和用处。至于…

初识Spring——IoC及DI详解

目录 一&#xff0c;什么是Spring Spring设计核心 Spring核心定义 Spring官网 二&#xff0c;什么是IoC IoC思想 控制权的反转 三&#xff0c;什么是DI DI的定义 DI和IoC的关系 一&#xff0c;什么是Spring Spring设计核心 我们常说的Spring其实指的是Spring Framewo…

ABP vNext电商项目落地实战(一)——项目搭建

一、落地条件&#xff1a; 1. .NET5版本 2. DDD 3. ABP vNext 4.ABP CLI &#xff08;ABP的命令行工具&#xff0c;包括ABP的各种模板&#xff09; 5.SQL Server 写在前面&#xff1a;我觉得这个框架的文件分层很凌乱&#xff0c;在企业的实际业务场景中&#xff0c;一般…

vscode+git浅尝

git 安装git以后初始化仓库分支重命名合并分支连接远程仓库推送项目 安装git以后 第一次使用git需要配置用户名和邮箱 任意处打开git终端&#xff0c;譬如鼠标右击点击git bash here 命令分别为&#xff1a; 设置用户名和邮箱 git config --global user.name “username” …

【QA】Python代码调试之解决Segmentation fault (core dumped)问题

Python代码调试之解决Segmentation fault 问题 问题描述排查过程1. 定位错误&#xff0c;2. 解决办法 参考资料 问题描述 Python3执行某一个程序时&#xff0c;报Segmentation fault (core dumped)错&#xff0c;且没有其他任何提示&#xff0c;无法查问题。 Segmentation fa…

jenkins gitlab asp.net core持续集成

什么是jenkins Jenkins直接取自其官方文档&#xff0c;是一个独立的开源自动化服务器&#xff0c;您可以使用它来自动执行与构建、测试、交付或部署软件相关的各种任务。 jenkins可以干什么 Jenkins 通过自动执行某些脚本来生成部署所需的文件来工作。这些脚本称为JenkinsFi…

叶酸聚乙二醇羟基FA-PEG-OH;了解高分子试剂 Folate-PEG-OH

FA-PEG-OH&#xff0c;叶酸-聚乙二醇-羟基 中文名称&#xff1a;叶酸聚乙二醇羟基 英文名称&#xff1a;FA-PEG-OH HO-PEG-FA Folate-PEG-OH 性状&#xff1a;黄色液体或固体&#xff0c;取决于分子量 溶剂&#xff1a;溶于水&#xff0c;DMSO、DMF等常规性有机溶剂 活性基…

【NestJs】使用连接mysql企业级开发规范

本篇将介绍如何建立 NestJs 的数据库连接、并使用数据库联表查询。 简介 Nest 与数据库无关&#xff0c;允许您轻松地与任何 SQL 或 NoSQL 数据库集成。根据您的偏好&#xff0c;您有许多可用的选项。一般来说&#xff0c;将 Nest 连接到数据库只需为数据库加载一个适当的 No…

Delphi DataSnap 流程分析(一)

DataSnap 有三种方式: 1、DataSnap REST Application: Create a DataSnap Server with support for REST Communication and with pages that invoke server methods using Java Script and JSON. 2、DataSnap Server: The DataSnap Server Wizard provides an easy way to i…