- 背景:
电化学仿真技术通过对电池微观行为进行研究,明晰电池内部多现象机理,并将其数值化,通过数值方法实现对物理特征联合计算,建立完整的电池模型。COMSOL Multiphysics具有强大的多物理场全耦合仿真分析功能、高效的计算性能,可以保证数值仿真的高度精确,已被广泛应用于各个学科领域,近年来运用COMSOL来解决电化学实际工程问题也越来越普遍。但由于许多学员应用COMSOL在实践中存在大量的技术操作难点,数值模拟技术如何与工程科学应用相结合成为大家普遍的问题,为解决大家在COMSOL仿真过程中遇到的痛难点,北京软研国际信息技术研究院特举办“COMSOL Multiphysics多物理场仿真应用”电化学系列专题线上培训班,本次培训由互动派(北京)教育科技有限公司具体承办,具体相关事宜通知如下:
大纲
专题一:“COMSOL多物理场耦合仿真技术与应用-燃料电池”大纲
专题课程二:“COMSOL多物理场耦合仿真技术与应用-锂离子电池”大纲
培训内容 | 时间 | ||
第 一 天 | 上午 | 1. COMSOL 仿真基础 1.1 数值仿真基本要素及其在 COMSOL 中的对应 1.1.1 模型参数与变量 1.1.2 物理场添加及电解条件设置 1.1.3 模型构建与网格划分 1.1.4 求解器类型与设置 1.1.5 后处理及数据分析 1.2 COMSOL 中锂离子电池接口介绍 1.2.1 电池基本物理过程及控制方程 1.2.2 常用电池边界条件及初始条件 1.2.3 常用电池电极材料参数设置 | 3 小时 |
下午 | 2. 锂离子电池 P2D 模型 2.1 P2D 模型的理解与分析 2.2 COMSOL 中电池 P2D 模型构建 2.2.1 模型参数输入 2.2.2 模型构建及模型材料设置 2.2.3 电池物理方程及参数设置 2.2.4 网格划分与求解器设置 2.3 电池典型充放电过程仿真及后处理技巧 | 3 小时 | |
第 二 天 | 上午 | 3. 锂离子电池电化学-热耦合模型 3.1 P2D 电化学模型与电池热模型耦合 3.2 电池集总参数模型及其与电池热模型耦合 3.3 两种电池电(化学)-热耦合模型的区别及应用场景 3.4 圆柱形或方形锂离子电池建模及仿真演示 (二选一) | 3 小时 |
下午 | 4. 锂离子电池衰退模型及仿真 4.1 COMSOL 中电池充放电循环仿真 4.1.1 电池充放电循环边界条件设置 4.1.2 电池加速衰退设置 4.1.3 电池充放电循环仿真后处理技巧 4.2 锂离子电池常见衰退现象及其数学描述 4.2.1 负极 SEI 膜增厚过程仿真 4.2.2 活性锂损失计算 4.3 锂离子电池衰退模型构建及仿真演示 | 3 小时 | |
第 三 天 | 上午 | 5. 动力电池热管理技术及数值仿真 5.1 热管理技术简述 5.2 动力电池风冷及模型构建 5.2.1 空气流动过程仿真及常用物理接口介绍 5.2.2 锂离子电池-空气流动耦合模型构建 5.2.3 典型工况电池空冷模型构建及仿真演示 | 3 小时 |
下午 | 5.3 动力电池液冷及模型构建 5.3.1 液气流动过程仿真及常用物理接口介绍 5.3.2 锂离子电池-冷却液流动耦合模型构建 5.3.3 典型工况电池液冷模型构建及仿真演示 | 3 小时 | |
第 四 天 | 上午 | 6 锂金属电沉积过程数值模拟 6.1 锂金属电沉积涉及的物理接口简介 6.1.1 一次、二次和三次电流分布接口 6.1.2 稀溶液理论与浓溶液理论 6.2 锂硫电池模型构建 | 3 小时 |
下午 | 6.3 锂离子电池异构模型 6.3.1 电池异构模型的意义 6.3.2电池异构模型构建 7 总结 | 3 小时 |
COMSOL电化学系列(锂离子电池,燃料电池)线上通知整个课程采用“理论+实操”的讲授模式,通过多个模块场景案例的应用讲解,了解借助 COMSOL在理想或多物理场环境下建模、分析、评估、预测燃料电池、锂离子电池、锂金属电池、电解加工、电化学加工等行业中涉及器件的性能的方法,使设计满足当前和https://mp.weixin.qq.com/s?__biz=Mzg2NDg0MTkzMw==&mid=2247484561&idx=1&sn=b988549a6db8bc476437262eec059c37&chksm=ce627d33f915f42502b277475873a99dd6a7aa12af57cc201d4a26f63f2d5a412575565fbc8b#rd
V:13784334157