PyTorch 深度学习实战 | DIEN 模拟兴趣演化的序列网络

news2024/10/2 10:40:40

01、实例:DIEN 模拟兴趣演化的序列网络

深度兴趣演化网络(Deep Interest Evolution Network,DIEN)是阿里巴巴团队在2018年推出的另一力作,比DIN 多了一个Evolution,即演化的概念。

在DIEN 模型结构上比DIN 复杂许多,但大家丝毫不用担心,我们将DIEN 拆解开来详细地说明。首先来看从DIEN 论文中截下的模型结构图,如图1所示。

■ 图1 DIEN模型结构全图

这张图初看之下很复杂,但可从简单到难一点点来说明。首先最后输出往前一段的截图如图2所示。

■ 图2 DIEN模型结构局部图(1)

这部分很简单,是一个MLP,下面一些箭头表示经过处理的向量。这些向量会经一个拼接层拼接,然后经几个全连接层,全连接层的激活函数可选择PReLU 或者Dice。最后用了一个Softmax(2)表示二分类,当然也可用Sigmoid进行二分类任务。

对输出端了解过后,再来看输入端,将输入端的部分放大后截图如图3所示。

■ 图3 DIEN模型结构局部图(2)

从右往左看,UserProfile Feature 指用户特征,Context Feature指内容特征,Target Ad指目标物品,其实这3个特征表示的无非是随机初始化一些向量,或者通过特征聚合的方式量化表达各种信息。

DIEN 模型的重点就在图3的user behavior sequence区域。user behavior sequence代表用户行为序列,通常利用用户历史交互的物品代替。图4展示了这块区域的全貌。

■ 图4 DIEN模型结构局部图(3)

这部分是DIEN 算法的核心:

第一部分: 用户行为序列,是将用户历史交互的物品序列经Embedding层初始化物品序列向量准备输入下一层,代码如下:

#recbyhand\chapter3\s34_DIEN.py
#初始化embedding
items = nn.Embedding( n_items, dim, max_norm = 1 )
#[batch_size, len_seqs, dim]
item_embs = items(history_seqs)#history_seqs指用户历史物品序列id

所以输出的是一个[批次样本数量,序列长度,向量维度]的张量。

第二部分: 兴趣抽取层,是一个GRU 网络,将上一层的输出在这一层输入。GRU 是RNN 的一个变种,在PyTorch里有现成模型,所以只有以下两行代码。

#recbyhand\chapter3\s34_DIEN.py
#初始化gru网络,注意正式写代码时,初始化动作通常写在__init__() 方法里
GRU = nn.GRU( dim, dim, batch_first=True)
outs, h = GRU(item_embs)

和RNN 网络一样,会有两个输出,一个是outs,是每个GRU 单元输出向量组成的序列,维度是[批次样本数量,序列长度,向量维度],另一个h 指的是最后一个GRU 单元的输出向量。在DIEN 模型中,目前位置处的h 并没有作用,而outs却有两个作用。一个作用是作为下一层的输入,另一个作用是获取辅助loss。

什么是辅助loss,其实DIEN 网络是一个联合训练任务,最终对目标物品的推荐预测可以产生一个损失函数,暂且称为Ltarget,而这里可以利用历史物品的标注得到一个辅助损失函数,此处称为Laux。总的损失函数的计算公式为

其中,α 是辅助损失函数的权重系数,是个超参。DIEN 给出的方法是一个二分类预测,如图5所示。

■ 图5 DIEN模型结构局部图(4)

历史物品标注指的是用户对对应位置的历史物品交互的情况,通常由1和0组成,1表示“感兴趣”,0则表示“不感兴趣”,如图5所示,将GRU 网络输出的outs与历史物品序列的Embedding输入一个二分类的预测模型中即可得到辅助损失函数,代码如下:

#recbyhand\chapter3\s34_DIEN.py
#辅助损失函数的计算过程
def forwardAuxiliary( self, outs, item_embs, history_labels ):
    '''
    :param item_embs: 历史序列物品的向量 [ batch_size, len_seqs, dim ]
    :param outs: 兴趣抽取层GRU网络输出的outs [ batch_size, len_seqs, dim ]
    :param history_labels: 历史序列物品标注 [ batch_size, len_seqs, 1 ]
    :return: 辅助损失函数
    '''
#[ batch_size * len_seqs, dim ]
item_embs = item_embs.reshape( -1, self.dim )
#[ batch_size * len_seqs, dim ]
    outs = outs.reshape( -1, self.dim )
#[ batch_size * len_seqs ]
    out = torch.sum( outs * item_embs, dim = 1 )
#[ batch_size * len_seqs, 1 ]
    out = torch.unsqueeze( torch.sigmoid( out ), 1 )
#[ batch_size * len_seqs,1 ]
history_labels = history_labels.reshape( -1, 1 ).float()
    return self.BCELoss( out, history_labels )

调整张量形状后做点乘,Sigmoid激活后与历史序列物品标注做二分类交叉熵损失函数(BCEloss)。

以上是第二部分兴趣抽取层所做的事情,最后来看最关键的第三部分。

第三部分: 兴趣演化层,主要由一个叫作AUGRU 的网络组成,AUGRU 是在GRU 的基础上增加了注意力机制。全称叫作GRU With Attentional Update Gate。AUGRU 的细节结构如图6所示。

■ 图6 AUGRU 单元细节

02、图书推荐

在大数据时代背景下,统计学作为数据分析领域的基础,被应用于各行各业,其方法发挥着重要作用。为了更广泛地普及统计学知识,培养更多的统计学人才,本书应运而生。

本书融合大量情景案例,轻松理解统计知识;零基础起步商务统计,培养数据价值思维。入门级统计学教程,培养数据价值思维。

作为入门级图书,本书内容安排如下。第1章从不确定性出发,讲述统计学和不确定性的关系,以及统计学中用于描述不确定性的各种概率模型。第2章是参数估计,系统讲述统计学中矩估计和极大似然估计两种常用的参数估计方法,并基于两种方法介绍各种常见概率分布中参数的点估计和区间估计。第3章是假设检验,首先从不确定性的角度探讨实际中的各种决策问题,帮助读者理解假设检验的思想和应用场景,然后系统介绍假设检验的方法论及各种常见推广。第4章是回归分析,首先介绍回归分析的思想和广泛的应用场景,然后系统地介绍各类常用模型,从线性回归到广义线性回归,最终落脚到两种机器学习算法(决策树、神经网络)。

本书特别强调实际应用,因此各个章节都辅以大量的实际案例,在介绍统计学基础知识的同时培养读者使用统计学方法解决实际问题的能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/437309.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Unity+jenkins自动化打包(1)

一 安装Jenkins https://www.jenkins.io/download/ 官网 1) 使用 brew 安装 2) 安装完成后一般都会遇到问题 我用的是jenkins-lts 稳定版 解决办法 删除掉对应的文件夹 1 rm -rf /usr/local/Homebrew/Library/Taps/homebrew/homebrew-services 2…

内网穿透实现在外远程SQL Server数据库 - Windows环境

目录 前言 1. 本地安装配置SQL Server 2. 将本地sqlserver服务暴露至公网 2.1 本地安装cpolar内网穿透 2.2 创建隧道 3. 公网远程连接sqlserver 3.1 使用命令行远程连接sqlserver, 3.2 使用图形界面远程连接sqlserver 3.3 使用SSMS图形界面远程连接sqlserver 4. 配置…

【服务器】威联通NAS文件共享 - 搭建SFTP服务并内网穿透实现在外远程访问

Yan-英杰的主页 悟已往之不谏 知来者之可追 C程序员,2024届电子信息研究生 目录 前言 1. 威联通NAS启用SFTP 2. 测试局域网访问 3. 内网穿透 3.1 威联通安装cpolar内网穿透 3.2 创建隧道 3.3 测试公网远程访问 4. 配置固定公网TCP端口地址 4.1 保留一个固定TCP…

AI绘图设计师Stable Diffusion成为生产力工具(六):制作一张庆祝五一劳动节的海报

S:AI能取代设计师么? I :至少在设计行业,目前AI扮演的主要角色还是超级工具,要顶替?除非甲方对设计效果无所畏惧~~ 预先学习: 安装webui《Windows安装Stable Diffusion WebUI及问题解决记录》。…

Spring《二》bean的实例化与生命周期

🍎道阻且长,行则将至。🍓 上一篇:Spring《一》快速入门 下一篇:Spring《三》DI依赖注入 目录 一、bean实例化🍍1.构造方法 ***2.静态工厂 *使用工厂创建对象实例化bean 3.实例工厂 ***使用示例工厂创建对象…

深度学习必备书籍——《Python深度学习 基于Pytorch》

作为一名机器学习|深度学习的博主,想和大家分享几本深度学习的书籍,让大家更快的入手深度学习,成为AI达人!今天给大家介绍的是:《Python深度学习 基于Pytorch》 文章目录 一、背景二、内容简介三、新版特色四、作者介绍…

3.26学习周报

文章目录 前言文献阅读摘要简介方法结果讨论结论 时间序列预测学习1.基础知识1.1什么是时间序列?1.2时间序列的基本任务?2.时间序列预测算法汇总LSTM学习 总结 前言 本周阅读文献《Simulate the forecast capacity of a complicated water quality mode…

【SpringBoot】| 邮箱发送验证码,你会了吗?

目录 🦁 题外话🦁 提前准备2.1 配置邮箱第三方登录2.1.1 点击设置——账户2.1.2 开启POP3/SMTP服务 2.2 添加依赖2.3 yaml配置 🦁 进入主题🦁 测试使用🦁 尾声3.1 安利一个生成验证码的工具类3.1.1 添加依赖3.1.2 编写…

Qt音视频开发32-qmedia内核回调拿图片数据

一、前言 使用qmediaplayer来打开视频并播放,默认首选会采用QVideoWidget控件来展示,优点是不用自己来绘制,一切交给了QVideoWidget控件,这样可以做到极低的CPU占用,缺点也明显,就是无法拿到每一帧的图片,很多时候我们还需要主动拿到每一帧的图片来运算做人工智能,通过…

hive之left semi join(左半连接)使用方法

目录 一、建表数据准备 二、语法 三、left semi join例子 四、left semi join、join、left join的区别 1、left semi join 2、left join 3、join 结语 一、建表数据准备 参考hive之full outer join(全连接)使用方法_IMezZ的博客-CSDN博客目录介…

【Bard】谷歌的人工智能工具—Bard初体验

文章目录 一、Bard介绍二、Bard体验1、加入Bard的候补名单2、登入Bard篇3、使用Bard篇(1)提供三种预选方式✨(2)创作生成各类文案(3)无生成图画能力(4)支持语音转文本输入✨&#xf…

AI绘图设计师Stable Diffusion成为生产力工具(五):放大并修复老照片、马赛克照片、身份证件照

S:你安装stable diffusion就是为了看小姐姐么? I :当然不是,当然是为了公司的发展谋出路~~ 预先学习: 安装webui《Windows安装Stable Diffusion WebUI及问题解决记录》。运行使用时问题《Windows使用Stable Diffusion时…

MySQL安装和配置(保姆级别和全网最详细教程)

前言 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,属于 Oracle 旗下产品。MySQL是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最好的 RDBMS (Relational Database Management System,关系…

OPNET Modeler 例程——ALOHA和CSMA的性能对比

文章目录 概述一、创建 ALOHA 协议模型二、创建 CSMA 协议模型三、创建收信机进程和节点模型四、创建总线型链路模型五、创建网络模型六、查看仿真结果总结 概述 本例程以以太网为例论述总线型网络的建模方法,对数据链路层的 MAC 技术进行建模分析,并进…

【多线程】常见的锁策略

✨个人主页:bit me👇 ✨当前专栏:Java EE初阶👇 ✨每日一语:老当益壮,宁移白首之心;穷且益坚,不坠青云之志。 目 录 🏳️一. 乐观锁 vs 悲观锁🏴二. 普通的互…

【数据分析之道-NumPy(七)】numpy字符串函数

文章目录 专栏导读1、函数说明2、add()函数3、multiply()函数4、center()函数5、capitalize()函数6、title()函数7、lower()函数8、upper()函数9、split()函数10、splitlines()函数11、strip()函数12、join()函数 专栏导读 ✍ 作者简介:i阿极,CSDN Pytho…

2023-04-16 学习记录--C/C++-邂逅C/C++

一、固定格式 ⭐️ stdio的理解: abbr.标准输入输出&#xff08;standard input/output&#xff09;。 #include <stdio.h> int main() {... // 表达式return 0; }二、printf语句&#xff08;输出语句&#xff09; ⭐️ &#xff08;一&#xff09;、前提【重要】 注意&a…

小程序组件化开发

前言 随着小程序的普及&#xff0c;越来越多的开发者开始使用小程序进行开发&#xff0c;而小程序的组件化开发已经成为了一种标配的开发模式。本文将深入介绍小程序组件化开发的相关知识&#xff0c;包括组件的定义、生命周期、通信和使用等方面&#xff0c;帮助大家更好地理解…

小程序WebSocket详解

1&#xff0c;什么是WebSocket&#xff1f; WebSocket是一种用于在Web浏览器和服务器之间进行双向通信的协议&#xff0c;而小程序WebSocket是在小程序中使用WebSocket协议进行双向数据通信的一种技术。它可以在单个TCP连接上进行全双工通信&#xff0c;实现实时、高效的数据通…

cesium加载geoserver发布的mvt服务

cesium 本身并不支持矢量切片的加载&#xff0c;所以需要借助其他工具进行解析。在Canvas中把矢量瓦片绘制好了&#xff0c;以图片形式像WMTS一样向Cesium提供图片服务就行了&#xff0c;当然也可以采用中间件的形式在后台把服务渲染好再以服务形式提供给前端。 方法1&#xf…