CI570 3BSE001440R1适用于数字功能需求较多的设计
尽管纯硅的CMOS 制程被认为仅适用于数字功能需求较多的设计,而不适用于以模拟电路为主的射频IC 设计,不过历经十几年的努力后,随着CMOS 性能的提升、晶圆代工厂在0.25mm 以下制程技术的配合、以及无线通信芯片整合趋势的引领下,RF CMOS 制程不仅是学界研究的热门课题,也引起了业界的关注。采用RF CMOS 制程最大的好处,当然是可以将射频、基频与存储器等组件合而为一的高整合度,并同时降低组件成本。但是症结点仍在于RF CMOS 是否能解决高噪声、低绝缘度与Q 值、与降低改善性能所增加制程成本等问题,才能满足无线通信射频电路严格的要求。
目前已采用RF CMOS 制作射频IC 的产品多以对射频规格要求较为宽松的Bluetooth 与WLAN 射频IC,例如CSR、Oki、Broadcom 等Bluetooth 芯片厂商皆已推出使用CMOS 制造的Bluetooth 传送器;英特尔公司宣布已开发出能够支持当前所有Wi-Fi 标准(802.11a、b和g)并符合802.11n 预期要求的全CMOS 工艺直接转换双频无线收发信机原型,包括了5GHz 的PA,并轻松实现了发送器与接收器功能的分离。而Atheros、Envara 等WLAN 芯片厂商也在最近推出全CMOS 制程的多模WLAN(.11b/g/a)射频芯片组。
手机用射频IC 规格非常严格,但是坚冰已经被打破。Silicon Labs 最先以数字技术来强化低中频至基频滤波器及数字频道选择滤波器功能,以降低CMOS 噪声过高的问题所生产的Aero 低中频GSM/GPRS 芯片组,英飞凌立刻跟进,也大量推出RF CMOS 工艺的产品,而高通在收购Berkana 后,也大力采用RF CMOS 工艺,一批新进射频厂家无一例外都采用RF CMOS 工艺,甚至是最先进的65 纳米RF CMOS 工艺。老牌的飞利浦、FREESCALE、意法半导体和瑞萨仍然坚持用传统工艺,主要是SiGe BiCMOS 工艺,诺基亚仍然大量使用意法半导体的射频收发器。而欧美厂家对新产品一向保守,对RF CMOS 缺乏信任,但是韩国大厂三星和LG 还有中国厂家夏新和联想,在成本压力下,大量采用RF CMOS 工艺的收发器。目前来看,缺点可能是故障率稍高和耗电稍大,并且需要多块芯片,增加设计复杂程度。但仍在可忍受的范围内。
其他应用领域还包括汽车的安全雷达系统,包括用于探测盲区的24GHz 雷达以及用于提供碰撞警告或先进巡航控制的77GHz 雷达;IBM 在此领域具备领导地位,2005 年推出的第四代SIGE 线宽有0.13 微米。
Ultra CMOS
Ultra CMOS CI570 3BSE001440R1
SOI 的一个特殊子集是蓝宝石上硅工艺,在该行业中通常称为Ultra CMOS。蓝宝石本质上是一种理想的绝缘体,衬底下的寄生电容的插入损耗高、隔离度低。Ultra CMOS 能制作很大的RF FET,对厚度为150~225μm 的正常衬底,几乎不存在寄生电容。晶体管采用介质隔离来提高抗闩锁能力和隔离度。为了达到完全的耗尽工作,硅层极薄至1000A。硅层如此之薄,以致消除了器件的体端,使它成为真正的三端器件。目前,Ultra CMOS 是在标准6 寸工艺设备上生产的,8 寸生产线亦已试制成功。示范成品率可与其它CMOS 工艺相媲美。
尽管单个开关器件的BVDSS 相对低些,但将多个FET 串联堆叠仍能承爱高电压。为了确保电压在器件堆上的合理分压,FET 至衬底间的寄生电容与FET 的源与漏间寄生电容相比应忽略不计。当器件外围达到毫米级使总电阻较低时,要保证电压的合理分压,真正的绝缘衬底是必不可少的。
Peregrine 公司拥有此领域的主要专利,采用Ultra CMOS 工艺将高Q 值电感和电容器集成在一起也很容易。线卷Q 值在微波频率下能达到50。超快速数字电路也能直接集成到同一个RF 芯片上。该公司推出PE4272 和PE4273 宽带开关例证了UltraCMOS 的用处(见图)。这两个75Ω 器件设计用于数字电视、PC TV、卫星直播电视机顶盒和其它一些精心挑选的基础设施开关。采用单极双掷格式,它们是PIN 二极管开关的很好的替代品,它们可在改善整体性能的同时大大减少了元器件的数量。
两个器件1GHz 时的插入耗损仅为0.5dB、P1dB 压缩率为32dBm、绝缘度在1GHz 时高达44dB。两种器件在3V 时静态电流仅为8μA、ESD 高达2kV。PE4273 采用6 脚SC-70 封装,绝缘值为35dB。PE4272 采用8 脚MSOP 封装,绝缘值为44dB。10K 订购量时,PE4272 和PE4273 的价格分别为0.45 和0.30 美元。CI570 3BSE001440R1
和Peregrine 公司有合作关系的日本冲电气也开发了类似产品,冲电气称之为SOS 技术,SOS技术是以"UTSi"为基础开发的技术。"UTSi"技术是由在2003 年1 月CI570 3BSE001440R1与冲电气建立合作关系的美国派更半导体公司(Peregrine Semiconductor Corp.)开发的。在蓝宝石底板上形成单晶硅薄膜,然后再利用CMOS 工艺形成电路。作为采用具有良好绝缘性的蓝宝石的SOS 底板,与硅底板和SOI(绝缘体上硅)底板相比,能够降低在底板上形成的电路耗电量。冲电气开发的RF 开关的耗电电流仅为15μA(电源电压为2.5~3V),与使用GaAs 材料的现有RF 开关相比,耗电量降到了约1/5。
XTB750B01 HUCD420038R0001 HIEE440503P201
UNS3020 HIEE205010R0003
UNS3020 HIEE205010R0001
UNS0862A HIEE405179R0001
UNS0007A-PV1 HIEE305098R0001 HIEE410730P201
UNC4672AV1 HIEE205012R1 HI220957-31239
UFC718AE101 HIEE300936R0101 HIEE410516P201
UFC718AE101 HIEE300936R0101
UAC389AE02C HIEE300888R0002
UAC326AE01 HIEE401481R1
UAC326AE HIEE410409P104
PPCC322BE HIEE300900R0001
PPC380AE102 HIEE300885R0102
PPC380AE02 HIEE300885R0102
PPA322B HIEE300016R2 HIEE400235R1
PMA323BE HIEE300308R1
NU8976A99 HIER466665R0099 HIEE320693R0001
LT8978BV1 HIEE320639R0001
KX8974CV24 HIEE320606R1
KUC321AE HIEE300698R0001
HIEE451220R1 HI903897-310/49 RTA108BE
HIEE451116R0001 FM9925A-E
HIEE450964R0001 SA9923A-E
HIEE450880R1 LT8979A-V
HIEE450848R1
HIEE450824R1
HIEE440503P201 HUCD420038R1 XTB750B01
HIEE440207P2 HIEE320639R1 N7-10408-1/13
HIEE410726P104 UNS0863 HIEE305082R0001
HIEE410385P201 HIEE300550R1
HIEE410379P201 HIEE401337R1
HIEE410372P201 HIEE300590R1 HI107355-310/20