Prophet学习(五)季节性、假日效应和回归因子

news2025/1/6 17:43:17

wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw== 编辑

 

目录

假期和特殊事件建模(Modeling Holidays and Special Events)

内置国家假日(Built-in Country Holidays)

季节性的傅里叶级数(Fourier Order for Seasonalities)

指定自定义季节(Specifying Custom Seasonalities)

取决于其他因素的季节性(Seasonalities that depend on other factors)

假日和季节性的先验尺度(Prior scale for holidays and seasonality)

额外的解释变量dditional regressors)


假期和特殊事件建模(Modeling Holidays and Special Events)

如果您有节假日或其他需要建模的重复事件,则必须为它们创建一个数据框架。它有两列(holiday和ds)和一行,分别表示假日的每一次出现。它必须包括节日发生的所有事件,包括过去的(追溯到历史数据)和未来的(直到做出预测)。如果它们在未来不会重复,先知将对它们进行建模,然后不将它们包括在预测中。

您还可以包含列lower_window和upper_window,它们将假日扩展到日期前后的[lower_window, upper_window]天。例如,如果你想在圣诞节之外还包括平安夜,你应该包括lower_window=-1,upper_window=0。如果你想在感恩节之外使用黑色星期五,你应该包括lower_window=0,upper_window=1。您还可以包含一个列prior_scale来为每个假日分别设置优先比例,如下所述。

在这里,我们创建了一个数据框架,其中包括佩顿·曼宁所有季后赛出场的日期:

# Python
playoffs = pd.DataFrame({
  'holiday': 'playoff',
  'ds': pd.to_datetime(['2008-01-13', '2009-01-03', '2010-01-16',
                        '2010-01-24', '2010-02-07', '2011-01-08',
                        '2013-01-12', '2014-01-12', '2014-01-19',
                        '2014-02-02', '2015-01-11', '2016-01-17',
                        '2016-01-24', '2016-02-07']),
  'lower_window': 0,
  'upper_window': 1,
})
superbowls = pd.DataFrame({
  'holiday': 'superbowl',
  'ds': pd.to_datetime(['2010-02-07', '2014-02-02', '2016-02-07']),
  'lower_window': 0,
  'upper_window': 1,
})
holidays = pd.concat((playoffs, superbowls))

上面我们包括了超级碗的日子,包括季后赛和超级碗比赛。这意味着超级碗效应将成为季后赛效应之上的额外附加奖金。

一旦创建了表格,假日影响就会通过假日参数传入预测中。下面我们用《快速入门》Quick Start | Prophet中的佩顿·曼宁数据来做:

# Python
m = Prophet(holidays=holidays)
forecast = m.fit(df).predict(future)

假期的影响可以在预测数据框架中看到:

# Python
forecast[(forecast['playoff'] + forecast['superbowl']).abs() > 0][
        ['ds', 'playoff', 'superbowl']][-10:]

                            

 节日的影响也会在成分图中体现出来,我们可以看到季后赛出现的日子有一个峰值,超级碗出现的峰值尤其大:

# Python
fig = m.plot_components(forecast)

   

 可以使用plot_forecast_component函数(从prophet导入)绘制单个假日。例如plot_forecast_component(m, forecast, 'superbowl')来绘制超级碗假日组件。

内置国家假日(Built-in Country Holidays)

你可以使用add_country_holidays方法(Python)或函数(R)使用内置的特定于国家的假日集合。指定了国家的名称,然后该国家的主要假日将包括在通过上述假日参数指定的任何假日之外:

# Python
m = Prophet(holidays=holidays)
m.add_country_holidays(country_name='US')
m.fit(df)

你可以通过查看模型的train_holiday_names (Python)或train.holiday.names (R)属性来查看包含哪些假日:

# Python
m.train_holiday_names
0                         playoff
1                       superbowl
2                  New Year's Day
3      Martin Luther King Jr. Day
4           Washington's Birthday
5                    Memorial Day
6                Independence Day
7                       Labor Day
8                    Columbus Day
9                    Veterans Day
10                   Thanksgiving
11                  Christmas Day
12       Christmas Day (Observed)
13        Veterans Day (Observed)
14    Independence Day (Observed)
15      New Year's Day (Observed)
dtype: object

每个国家的假日由Python中的假日包提供。可用的国家列表和要使用的国家名称可以在他们的页面上找到:https://github.com/dr-prodigy/python-holidays。除了这些国家,Prophet还包括巴西(BR)、印度尼西亚(ID)、印度(In)、马来西亚(MY)、越南(VN)、泰国(TH)、菲律宾(PH)、巴基斯坦(PK)、孟加拉国(BD)、埃及(EG)、中国(CN)以及俄罗斯(RU)、韩国(KR)、白俄罗斯(BY)和阿拉伯联合酋长国(AE)的假期。

在Python中,大多数假期都是确定性计算的,因此适用于任何日期范围;如果日期超出该国支持的范围,将发出警告。在R中,假日日期从1995年计算到2044年,并以data-raw/generated_holidays.csv的形式存储在包中。如果需要更大的日期范围,则可以使用此脚本将该文件替换为不同的日期范围:https://github.com/facebook/prophet/blob/main/python/scripts/generate_holidays_file.py。

如上所述,国家一级的假期将显示在组件图中:

# Python
forecast = m.predict(future)
fig = m.plot_components(forecast)

季节性的傅里叶级数(Fourier Order for Seasonalities)

季节性是用部分傅里叶和估计的。详细信息请参阅论文,维基百科上的这张图说明了傅里叶部分和如何近似任意周期信号。部分和中的项数(顺序)是一个参数,它决定了季节性变化的快慢。为了说明这一点,请考虑《快速入门》中的Peyton Manning数据。年季节性的默认傅里叶顺序是10,这产生了这样的拟合:

# Python
from prophet.plot import plot_yearly
m = Prophet().fit(df)
a = plot_yearly(m)

默认值通常是合适的,但当季节性需要适应更高频率的变化时,可以增加默认值,而且通常不太平滑。在实例化模型时,可以为每个内置季节性指定傅里叶顺序,这里增加到20:

# Python
from prophet.plot import plot_yearly
m = Prophet(yearly_seasonality=20).fit(df)
a = plot_yearly(m)

增加傅里叶项的数量可以使季节性更适合变化更快的周期,但也可能导致过拟合:N个傅里叶项对应于用于建模周期的2N个变量

指定自定义季节(Specifying Custom Seasonalities)

如果时间序列超过两个周期,Prophet将默认适合每周和每年的季节性。它还将适合每日时间序列的每日季节性。您可以使用add_seasonality方法(Python)或函数(R)添加其他季节性数据(每月、每季度、每小时)。

这个函数的输入是一个名称,以天为单位的季节周期,以及季节的傅里叶顺序。作为参考,默认情况下Prophet使用3的傅里叶顺序表示周季节性,10的傅里叶顺序表示年季节性。add_seasonality的一个可选输入是该季节成分的先验尺度——这将在下面讨论。

例如,这里我们拟合了《快速入门》中的Peyton Manning数据,但将周季节性替换为月季节性。每月季节性将出现在成分图中:

# Python
m = Prophet(weekly_seasonality=False)
m.add_seasonality(name='monthly', period=30.5, fourier_order=5)
forecast = m.fit(df).predict(future)
fig = m.plot_components(forecast)

 

取决于其他因素的季节性(Seasonalities that depend on other factors)

在某些情况下,季节性可能取决于其他因素,例如夏季的每周季节性模式与一年中的其他时间不同,或者周末与工作日的每日季节性模式不同。这些类型的季节性可以用条件季节性来建模。

看看《快速入门》中的Peyton Manning的例子。默认的每周季节性假设每周季节性的模式在全年都是相同的,但我们预计每周季节性的模式在赛季(每个周日都有比赛)和淡季是不同的。我们可以使用条件季节性来构造单独的季节性季节性。

首先,我们在数据框架中添加一个布尔列,表示每个日期是在旺季还是淡季:

# Python
def is_nfl_season(ds):
    date = pd.to_datetime(ds)
    return (date.month > 8 or date.month < 2)

df['on_season'] = df['ds'].apply(is_nfl_season)
df['off_season'] = ~df['ds'].apply(is_nfl_season)

然后,我们禁用内置的每周季节性,并将其替换为两个每周季节性,并将这些列指定为条件。这意味着季节性将只应用于condition_name列为True的日期。我们还必须将该列添加到我们正在进行预测的未来数据框架中。

# Python
m = Prophet(weekly_seasonality=False)
m.add_seasonality(name='weekly_on_season', period=7, fourier_order=3, condition_name='on_season')
m.add_seasonality(name='weekly_off_season', period=7, fourier_order=3, condition_name='off_season')

future['on_season'] = future['ds'].apply(is_nfl_season)
future['off_season'] = ~future['ds'].apply(is_nfl_season)
forecast = m.fit(df).predict(future)
fig = m.plot_components(forecast)

这两个季节现在都显示在上面的成分图中。我们可以看到,在每个周日都有比赛的赛季期间,周日和周一的数据大幅增长,而在休赛期则完全没有。

假日和季节性的先验尺度(Prior scale for holidays and seasonality)

如果您发现节假日过度拟合,您可以使用参数假日s_prior_scale调整它们的先验比例来平滑它们。默认情况下,这个参数是10,它提供了很少的正则化。降低这个参数会降低假日效应:

# Python
m = Prophet(holidays=holidays, holidays_prior_scale=0.05).fit(df)
forecast = m.predict(future)
forecast[(forecast['playoff'] + forecast['superbowl']).abs() > 0][
    ['ds', 'playoff', 'superbowl']][-10:]

                 

 

与以前相比,假日效应的程度有所降低,特别是对于超级碗来说,它的观测量最少。有一个参数seasonality_prior_scale,它类似地调整季节性模型拟合数据的程度。

通过在节假日数据框架中包含一个列prior_scale,可以为单个节假日单独设置优先比例。个体季节性的先验量表可以作为参数传递给add_seasonality。例如,仅每周季节性的先验尺度可以使用以下方法设置:

# Python
m = Prophet()
m.add_seasonality(
    name='weekly', period=7, fourier_order=3, prior_scale=0.1)

额外的解释变量dditional regressors)

可以使用add_regressor方法或函数向模型的线性部分添加额外的回归量。带有回归值的列需要同时出现在拟合和预测数据框架中。例如,我们可以在NFL赛季的周日添加一个额外的效果。在分量图中,这种效应将在“extra_regressors”图中显示:


# Python
def nfl_sunday(ds):
    date = pd.to_datetime(ds)
    if date.weekday() == 6 and (date.month > 8 or date.month < 2):
        return 1
    else:
        return 0
df['nfl_sunday'] = df['ds'].apply(nfl_sunday)

m = Prophet()
m.add_regressor('nfl_sunday')
m.fit(df)

future['nfl_sunday'] = future['ds'].apply(nfl_sunday)

forecast = m.predict(future)
fig = m.plot_components(forecast)

NFL周日也可以使用上面描述的“假日”界面处理,通过创建过去和未来NFL周日的列表。add_regressor函数为定义额外的线性回归函数提供了更通用的接口,特别是不要求回归函数是二进制指示符。另一个时间序列可以用作回归函数,尽管它的未来值必须是已知的。

这本笔记本展示了一个在自行车使用预测中使用天气因素作为额外回归量的例子,并提供了一个很好的说明如何将其他时间序列作为额外回归量。

add_regressor函数有可选参数,用于指定优先比例(默认使用holiday优先比例)以及回归器是否标准化——请参阅Python中的docstring with help(Prophet.add_regressor)和r中的?add_regressor。注意,回归器必须在模型拟合之前添加。如果回归量在整个历史中是恒定的,先知也会提出一个错误,因为没有什么可以从它中拟合。

额外的回归量必须同时知道历史和未来的日期。因此,它必须要么是已知的未来值(例如nfl_sunday),要么是在其他地方单独预测的值。上面链接的笔记本中使用的天气回归器是一个额外回归器的很好的例子,它可以用于预测未来的值。也可以使用另一个时间序列作为回归量,该时间序列模型已经预测过,例如Prophet。例如,如果r(t)被包括为y(t)的回归量,则可以使用Prophet来预测r(t),然后在预测y(t)时,该预测可以作为未来的值插入。关于这种方法需要注意的是:除非r(t)比y(t)更容易预测,否则这种方法可能没有用处。这是因为r(t)的预测误差会导致y(t)的预测误差。这种方法很有用的一种情况是在分层时间序列中,其中有顶级预测,具有更高的信噪比,因此更容易预测。它的预测可以包含在每个较低级别系列的预测中。

额外的回归量被放入模型的线性分量中,因此底层模型是时间序列依赖于额外的回归量作为加性或乘性因子(关于乘性,请参阅下一节)。

附加回归系数(Coefficients of additional regressors)

要提取额外回归函数的beta系数,请使用效用函数regressor_coefficients (from prophet。实用程序在Python中导入regressor_coefficients, prophet::regressor_coefficients in R)在拟合的模型上。每个回归系数的估计beta系数大致表示回归值单位增加的预测值的增加(注意,返回的系数总是在原始数据的尺度上)。如果指定了mcmc_samples,还将返回每个系数的可信区间,这可以帮助确定每个回归量是否具有“统计显著性”。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/422016.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

启动neo4j备忘录

做个备忘录 Neo4j下载、安装、环境配置 优秀教程&#xff1a;https://blog.csdn.net/zeroheitao/article/details/122925845 Neo4j环境变量配置 1、安装JDK 由于Neo4j是基于Java的图形数据库&#xff0c;运行Neo4j需要启动JVM进程&#xff0c;因此必须安装JAVA SE的JDK。配置…

【数据结构】反射

文章目录&#x1f337; 1 定义&#x1f337; 2 用途(了解)&#x1f337; 3 反射基本信息&#x1f337; 4 反射相关的类&#x1f333; 4.1 Class类(反射机制的起源)Class类中的相关方法&#x1f333; 4.2 反射示例4.2.1 获得Class对象的三种方式4.2.2 反射的使用⭐️反射使用1&a…

3个宝藏级软件,每一个都超级好用,少装一个跟你急

分区助手 下载地址&#xff1a;https://www.disktool.cn/ 很多新手小白使用电脑都不懂&#xff0c;把所有软件都安装到了C盘&#xff0c;时间久了储存的东西变多&#xff0c;C盘空间着实不够用&#xff0c;这个免费的工具可以帮你重新分区&#xff0c;无损数据地执行。除了无损…

腾讯云8核16G18M轻量服务器CPU带宽流量性能测评

腾讯云轻量应用服务器8核16G18M带宽&#xff0c;18M公网带宽下载速度峰值可达2304KB/秒&#xff0c;相当于2.25M/s&#xff0c;系统盘为270GB SSD盘&#xff0c;3500GB月流量&#xff0c;折合每天116GB流量。腾讯云百科分享腾讯云轻量服务器8核16G18M配置、CPU型号、公网带宽月…

ChatGPT资讯—2023.4.3

一、 最新资讯 1. UC伯克利开源大语言模型Vicuna又来了 Vicuna-13b只需要花费300美刀&#xff08;比Alpaca的600美元便宜一半&#xff09;就能搞出来接近ChatGPT的水平。如何用小资源大模型让个人普通者与中小微企业也能用上高科技一直是开源社区孜孜追求的目标 Vicuna开源代…

ERP与CRM、MRP、PLM、APS、MES、WMS、SRM的关系

数字化转型中少不了ERP系统的存在&#xff0c;CRM/MRP/PLM/APS/MES/WMS/SRM这些都需要一起上吗&#xff1f; 如下图所示&#xff0c;是某企业IT系统集成架构流图。 先了解一下ERP是做什么的&#xff0c;ERP就是企业资源管理系统&#xff0c;从企业的价值链分析&#xff0c;企业…

用机器学习sklearn+opencv-python过古诗文网4位数字+字母混合验证码

目录 获取验证码图片 用opencv-python处理图片 制作训练数据集 训练模型 识别验证码 编写古诗文网的登录爬虫代码 总结与提高 源码下载 在本节我们将使用sklearn和opencv-python这两个库过掉古诗文网的4位数字字母混合验证码&#xff0c;验证码风格如下所示。 验证码获…

分库分表介绍以及shardingjdbc实现分库分表

分库分表概念 一、什么是分库分表 分库分表是在海量数据下&#xff0c;由于单库、表数据量过大&#xff0c;导致数据库性能持续下降的问题&#xff0c;演变出的技术方案。 分库分表是由分库和分表这两个独立概念组成的&#xff0c;只不过通常分库与分表的操作会同时进行&…

还不懂怎么设计超时关单?一文告诉你!

背景介绍 ​ 提交订单&#xff0c;是交易领域避不开的一个话题。在提交订单设计时&#xff0c;会涉及到各种资源的预占&#xff1a;如商品库存、优惠券数量等等。但是&#xff0c;下单的流程并不能总是保证成功的&#xff0c;如商品库存异常的时候被拦截、优惠券数量不足的时候…

3月更新 | Visual Studio Code Python

我们很高兴地宣布&#xff0c;2023年3月版 Visual Studio Code Python 和 Jupyter 扩展现已推出&#xff01; 此版本包括以下改进&#xff1a; 后退按钮和取消功能添加到创建环境命令默认情况下&#xff0c;Python 扩展不再附带 isortJupyter 笔记本中内核选择的改进Python P…

Modbus 协议详解

Modbus 协议详解 通信协议是指双方实体完成通信或服务所必须遵循的规则和约定&#xff0c;例如我们为实现人与人之间的交流需要约定统一的语言&#xff0c;统一的文字&#xff0c;规定语速等等。 而对于设备之间&#xff0c;协议定义了数据单元使用的格式&#xff08;例如大端…

四、数组、切片,映射

一、一维数组 //声明一个包含5个元素的整型数组 var array [5]int //具体数值填充数组 array : [5]int{1, 2, 3, 4, 5} //容量由初始化值的数量决定 array : [...]int{1, 2, 3, 4, 5) //只初始化索引为1和2的元素 array : [5]int{1: 10, 2: 20} //修改索引为2的元素的值 array…

Linux文件系统、虚拟内存、进程与线程、锁

文章目录文件系统suLinux 中默认没有 super 命令/proc/etc/var/root/home/bin/dev/lib/sbintmp句柄maxfdPWDpathhomeexportwdfdu虚拟内存jobsLinux下一切皆文件swaponmkswap进程与线程nohup子进程与父进程unix进程间的通信方式线程的同步方式sedtarhistory硬链接ln&#xff08;…

Go分布式爬虫笔记(二十一)

文章目录21 切片和哈希表切片底层结构截取扩容哈希表原理哈希碰撞拉链法开放寻址法&#xff08;Open Addressing&#xff09;读取重建原理删除原理思考题Go 的哈希表为什么不是并发安全的&#xff1f;在实践中&#xff0c;怎么才能够并发安全地操作哈希表&#xff1f;拉链法开放…

软件设计师笔记-----程序设计语言与语言处理程序基础

文章目录七、程序设计语言与语言处理程序基础7.1、编译与解释&#xff08;低频&#xff09;7.2、文法&#xff08;低频&#xff09;7.3、有限自动机与正规式&#xff08;几乎每次都会考到&#xff09;有限自动机正规式7.4、表达式&#xff08;偶尔考到&#xff09;7.5、传值和传…

2023-详解实时数仓建设

一、实时数仓建设背景 1. 实时需求日趋迫切 目前各大公司的产品需求和内部决策对于数据实时性的要求越来越迫切&#xff0c;需要实时数仓的能力来赋能。传统离线数仓的数据时效性是 T1&#xff0c;调度频率以天为单位&#xff0c;无法支撑实时场景的数据需求。即使能将调度频…

网狐大联盟增加账号登陆功能

1. UI设计 2. 发布CSB文件,并添加到前端工程资源目录下 打开已发布csb文件所有目录 复制到工程目录 如果有用到其它目录的资源也要同步复制到工程资源对应目录中: 2.脚本功能编写 增加前端结构: -- 帐号登录 login.CMD_MB_LogonAccounts= {{t = "word", k = &#

企业电子招标采购系统源码—企业战略布局下的采购寻源

​ 智慧寻源 多策略、多场景寻源&#xff0c;多种看板让寻源过程全程可监控&#xff0c;根据不同采购场景&#xff0c;采取不同寻源策略&#xff0c; 实现采购寻源线上化管控&#xff1b;同时支持公域和私域寻源。 询价比价 全程线上询比价&#xff0c;信息公开透明&#xff…

一站式智慧仓储物流方案,免费帮你一屏搞定,领导不重用你都难!

在江苏无锡&#xff0c;菜鸟已经通过柔性自动化技术搭建了亚洲规模最大的无人仓&#xff0c;超过1000台无人车可以快速组合、分拆作业&#xff0c;生产效率可提升一倍多&#xff0c;大大节省了人工成本。智慧仓储物流作为物流的重要一环&#xff0c;也吸引了广泛关注。2022年双…

如何使用 Jetpack Compose 创建翻转卡片效果

如何使用 Jetpack Compose 创建翻转卡片效果 介绍 在电子商务和银行应用程序中输入卡信息是很常见的情况。我认为让用户更轻松地处理这种情况并创建更吸引眼球的 UI 将很有用。大多数应用程序/网站都喜欢它。 执行 在开发阶段&#xff0c;您需要做的是打开一个 Android 项目…