剪枝与重参第六课:基于VGG的模型剪枝实战

news2024/10/4 5:25:49

目录

  • 基于VGG的模型剪枝实战
    • 前言
    • 1.Intro
    • 2.Prune实战
      • 2.1 说明
      • 2.2 test()
      • 2.3 加载稀疏训练模型
      • 2.4 前处理
      • 2.5 建立新模型并存储信息
      • 2.6 BatchNorm层的剪枝
      • 2.7 Conv2d的剪枝
      • 2.8 Linear的剪枝
    • 3.基于VGG的模型剪枝
    • 总结

基于VGG的模型剪枝实战

前言

手写AI推出的全新模型剪枝与重参课程。记录下个人学习笔记,仅供自己参考。

本次课程主要讲解基于VGG的模型剪枝的实战。

课程大纲可看下面的思维导图

在这里插入图片描述

1.Intro

本次剪枝实战是基于下面这篇论文去复现的,主要是实现对BN层的 γ \gamma γ进行剪枝操作,

  • 相关论文:Learning Efficient Convolutional Networks through Network Slimming (ICCV 2017)

我们先来考虑一个问题,深度学习模型里面的卷积层出来之后的特征有非常多,这里面会不会存在一些没有价值的特征及其相关的连接?又如何判断一个特征及其连接是否有价值?

先给出答案:在Batch Normalize层的缩放因子上施加L1正则化(这是上面这篇论文的核心思想,更多细节请自行阅读论文😂)

优点:

  • 不需要对现有的CNN架构进任何更改
  • 使用L1正则化将BN缩放因子的值推向零
    • 使我们能够识别不重要的通道(或神经元),因为每个缩放因子对应于特定的卷积通道(或全连接层的神经元)
    • 这有利于在接下来的步骤中进行通道级剪枝
  • 附加的正则化项很少会损害性能。不仅如此,在某些情况下,它会导致更高的泛化精度
  • 剪枝不重要的通道有时可能会暂时降低性能,但这个效应可以通过接下来的修剪网络的微调来弥补
  • 剪枝后,由此得到的较窄的网络在模型大小、运行时内存和计算操作方面比初始的宽网络更加紧凑。上述过程可以重复几次,得到一个多通道网络瘦身方案,从而实现更加紧凑的网络。

下面是论文中提出的用于BN层 γ \gamma γ参数稀疏训练的损失函数
L = ∑ ( x , y ) l ( f ( x , W ) , y ) + λ ∑ γ ∈ Γ g ( γ ) L = \sum_{(x,y)} l\Big(f(x, W), y\Big) + \lambda\sum_{\gamma \in \Gamma} g(\gamma) L=(x,y)l(f(x,W),y)+λγΓg(γ)
总的来说,这个损失函数的作用是在分类问题的基础上,加上对BN层 γ \gamma γ参数的L1正则化。在训练过程中,通过调整超参数 λ \lambda λ的大小,可以实现对BN层 γ \gamma γ参数的稀疏训练,即将一部分 γ \gamma γ参数的值变为0,从而达到减少模型复杂度、提高模型泛化性能的效果。

具体实现流程可见下图

在这里插入图片描述

首先初始化模型获得一个benchmark=>稀疏训练=>剪枝=>微调=>最终模型

2.Prune实战

2.1 说明

我们对模型进行剪枝,主要针对有参数的层:Conv2d、BatchNorm2d、Linear,Pool2d的层只用来做下采样,没有可学习的参数,不用处理。下面是一些关于mask的一些说明

cfg和cfg_mask

  • 在之前的课程中我们对 BatchNorm 进行了稀疏训练
  • 训练完成后我们获取所有的 BatchNorm 的参数数量,将 BatchNorm 所有参数取出来排序
  • 根据剪枝比例 r r r 设置 threshold 阈值,通过 gt() (greater than) 方法得到 mask,小于 threshold 的置零
  • 根据 mask 计算剩余的数量,记录
    • cfg:用于创建新模型
    • cfg_mask:用于剪枝
  • 后面会用到这两个 mask,操作每一层的输入和输出

在这里插入图片描述

Conv2d

  • weights:(out_channels, in_channels, kernel_size, kernel_size)
  • 利用 mask 做索引,对应赋值
  • 使用 start_mask、end_mask

BatchNorm2d

  • self.weight:存储 γ \gamma γ,(input_size)
  • self.bias:存储 β \beta β,(input_size)
  • 使用 end_mask
  • 更新 start_mask、end_mask

Linear

  • self.weight:(out_features, int_features)
  • self.bias:(out_features)
  • 使用 start_mask

在这里插入图片描述

2.2 test()

我们先来实现一个test()函数,用于测试prune剪枝后模型的性能,示例代码如下:

import argparse
from utils import get_test_dataloader
import torch

def parse_opt():
    # Prune setting
    parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR prune')
    parser.add_argument('--dataset', type=str, default='cifar10', help='training dataset (default: cifar10)')
    parser.add_argument('--test-batch-size', type=int, default=256, metavar='N', help='input batch size for test (default: 256)')
    parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training')
    parser.add_argument('--depth', type=int, default=11, help='depth of the vgg')
    parser.add_argument('--percent', type=float, default=0.5, help='scale sparse rate (default: 0.5)')
    parser.add_argument('--model', default='', type=str, metavar='PATH', help='path to the model (default: none)')
    parser.add_argument('--save', default='logs/', type=str, metavar='PATH', help='path to save pruned model (default: none)')
    args = parser.parse_args()
    return args

def test(model):
    kwargs = {'num_workers' : 1, 'pin_memory' : True} if args.cuda else {}

    test_loader = get_test_dataloader(batch_size=args.test_batch_size, **kwargs)

    model.eval()
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            if args.cuda:
                data, target = data.cuda(), target.cuda()
            
            output = model(data)
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).cpu().sum()
        
        accuracy = 100. * correct / len(test_loader.dataset)
        print('\nTest set: Accuracy: {}/{} ({:.1f}%)\n'.format(
            correct, len(test_loader), accuracy
        ))
    return accuracy / 100

if __name__ == "__main__":
    args = parse_opt()

2.3 加载稀疏训练模型

我们需要使用上节课的train.py来获得稀疏训练模型的权重,可在终端执行如下指令:

python .\train.py -sr --s 0.0001 --dataset cifar10 --arch vgg --depth 11 --epochs 10

接着我们对稀疏训练后的模型进行加载,因为需要对稀疏训练后BN层的一些参数进行统计,示例代码如下:

import os
import argparse
from models.vgg import VGG
from utils import get_test_dataloader
import torch

def parse_opt():
    ...

def test(model):
    ...

if __name__ == "__main__":
    args = parse_opt()

    args.cuda = not args.no_cuda and torch.cuda.is_available()

    if not os.path.exists(args.save):
        os.makedirs(args.save)
    
    model = VGG(depth=args.depth)

    if args.cuda:
        model.cuda()
    
    if args.model:
        if os.path.isfile(args.model):
            print("=> loading checkpoing '{}'".format(args.model))
            checkpoint = torch.load(args.model)
            args.start_epoch = checkpoint['epoch']
            best_prec1 = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'])
            print("=> loaded checkpoint '{}' (epoch {}) Prec1: {:f}".format(
                args.model, checkpoint['epoch'], best_prec1
            ))
        else:
            print("=> no checkpoing found at '{}'".format(args.model))
    
    print(model)

2.4 前处理

现在我们对BN层进行prune,将其配置信息cfg和对应的cfg_mask保存下来,供后面使用,示例代码如下:


if __name__ == "__main__":
    
    ...
    
    total = 0
    
    for m in model.modules():
        if isinstance(m, nn.BatchNorm2d):
            total += m.weight.data.shape[0]
    
    bn = torch.zeros(total)

    index = 0
    # 获取所有BN层的 gamma 参数,存储在nn.BatchNorm2d.weight.data
    # beta 参数存储在nn.BatchNorm2d.bias.data
    for m in model.modules():
        if isinstance(m, nn.BatchNorm2d):
            size = m.weight.data.shape[0]
            bn[index:(index+size)] = m.weight.data.abs().clone()
            index += size
    
    # 获取threshold
    y, i = torch.sort(bn)
    thre_index = int(total * args.percent)
    thre = y[thre_index]

    pruned  = 0
    cfg = []
    cfg_mask = []
    
    for k, m in enumerate(model.modules()):
        if isinstance(m, nn.BatchNorm2d):
            weight_copy = m.weight.data.abs().clone()
            mask = weight_copy.gt(thre).float().cuda()
            pruned = pruned + mask.shape[0] - torch.sum(mask)
            m.weight.data.mul_(mask)
            m.bias.data.mul_(mask)
            cfg.append(int(torch.sum(mask)))
            cfg_mask.append(mask.clone())
            print('layer index: {:d} \t total channel: {:d} \t remaining channel: {:d}'.format(
                k, mask.shape[0], int(torch.sum(mask))
            ))
        elif isinstance(m, nn.MaxPool2d):
            cfg.append('M')
    
    pruned_ratio = pruned / total
    print("Pre-process Sucessful Pruned Ratio: {:.2f}%".format(pruned_ratio * 100.))
    acc = test(model)
    print(cfg)

其打印输出如下:

layer index: 3   total channel: 64       remaining channel: 63
layer index: 7   total channel: 128      remaining channel: 126
layer index: 11          total channel: 256      remaining channel: 227
layer index: 14          total channel: 256      remaining channel: 162
layer index: 18          total channel: 512      remaining channel: 180
layer index: 21          total channel: 512      remaining channel: 194
layer index: 25          total channel: 512      remaining channel: 191
layer index: 28          total channel: 512      remaining channel: 232
Pre-process Sucessful Pruned Ratio: 50.04%
Files already downloaded and verified

Test set: Accuracy: 1757/40 (17.6%)

[63, 'M', 126, 'M', 227, 162, 'M', 180, 194, 'M', 191, 232]

可以看到最终的配置信息与原来的有所不同,具体对比如下:(前面通道数没啥变化,后面通道数剪枝较多,精度下降严重)

# old
[64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512]
# new
[63, 'M', 126, 'M', 227, 162, 'M', 180, 194, 'M', 191, 232]

2.5 建立新模型并存储信息

我们拿到cfg和cfg_mask后就可以对带参数的三个层即Conv2d、BatchNorm2d、Linear进行剪枝的操作了,

我们先通过cfg建立一个新模型,并存储其相关信息,示例代码如下:

if __name__ == "__main__":
    newmodel = VGG(cfg=cfg)
    if args.cuda:
        newmodel.cuda()
    
    num_parameters = sum([param.nelement() for param in newmodel.parameters()])
    savepath = os.path.join(args.save, "prune.txt")
    with open(savepath, 'w') as fp:
        fp.write("Configuation: " + str(cfg) + "\n")
        fp.write("Number of parameters: " + str(num_parameters) + "\n")
        fp.write("Test accuracy: " + str(acc))
    
    layer_id_in_cfg = 0
    start_mask = torch.ones(3)
    end_mask = cfg_mask[layer_id_in_cfg]
    for [m0, m1] in zip(model.modules(), newmodel.modules()):
        pass

2.6 BatchNorm层的剪枝

说明:start_mask和end_mask => 对应于Conv+BN层的输入和输出

BN层剪枝的示例代码如下:

if __name__ == "__main__":
    ...
    for [m0, m1] in zip(model.modules(), newmodel.modules()):
        if isinstance(m0, nn.BatchNorm2d):
            idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy())))
            if idx1.size == 1:
                idx1 = np.resize(idx1, (1,))

                m1.weight.data = m0.weight.data[idx1.tolist()].clone()
                m1.bias.data   = m0.bias.data[idx1.tolist()].clone()
                m1.running_mean = m0.running_mean[idx1.tolist()].clone()
                m1.running_var  = m0.running_var[idx1.tolist()].clone()
                layer_id_in_cfg += 1
                start_mask = end_mask.clone()
                if layer_id_in_cfg < len(cfg_mask):
                    end_mask = cfg_mask[layer_id_in_cfg]

2.7 Conv2d的剪枝

Conv层剪枝的示例代码如下:

if __name__ == "__main__":
    ...
    for [m0, m1] in zip(model.modules(), newmodel.modules()):
        ...

        elif isinstance(m0, nn.Conv2d):
            idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy())))
            idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy())))

            print("In channels: {:d}, Out channels: {:d}".format(idx0.size, idx1.size))
            if idx0.size == 1:
                idx0 = np.resize(idx0, (1,))
            if idx1.size == 1:
                idx1 = np.resize(idx1, (1,))
            
            w1 = m0.weight.data[:, idx0.tolist(), :, :].clone()
            w1 = w1[idx1.tolist(), :, :, :].clone()
            m1.weight.data = w1.clone()

2.8 Linear的剪枝

Linear层剪枝的示例代码如下:

if __name__ == "__main__":
    ...
    for [m0, m1] in zip(model.modules(), newmodel.modules()):
        ...
        elif isinstance(m0, nn.Linear):
            idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy())))
            if idx0.size == 1:
                idx0 = np.resize(idx0, (1,))

                m1.weight.data = m0.weight.data[:, idx0].clone()
                m1.bias.data   = m0.bias.data.clone() 

3.基于VGG的模型剪枝

完整的示例代码如下:

import os
import argparse
import numpy as np
import torch
import torch.nn as nn

from models.vgg import VGG
from utils import get_test_dataloader


def parse_opt():
    # Prune settings
    parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR prune')
    parser.add_argument('--dataset', type=str, default='cifar100', help='training dataset (default: cifar10)')
    parser.add_argument('--test-batch-size', type=int, default=256, metavar='N', help='input batch size for testing (default: 256)')
    parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training')
    parser.add_argument('--depth', type=int, default=19, help='depth of the vgg')
    parser.add_argument('--percent', type=float, default=0.5, help='scale sparse rate (default: 0.5)')
    parser.add_argument('--model', default='', type=str, metavar='PATH', help='path to the model (default: none)')
    parser.add_argument('--save', default='logs/', type=str, metavar='PATH', help='path to save pruned model (default: none)')
    args = parser.parse_args()
    return args

# simple test model after Pre-processing prune (simple set BN scales to zeros)
# Define a function named test that takes a PyTorch model as input
def test(model):
    # Set kwargs to num_workers=1 and pin_memory=True if args.cuda is True, 
    # otherwise kwargs is an empty dictionary
    kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
    
    # Create a test data loader for the CIFAR10 dataset if args.dataset is 'cifar10'
    if args.dataset == 'cifar10':
        test_loader = get_test_dataloader(batch_size=args.test_batch_size, **kwargs)
    else:
        raise ValueError("No valid dataset is given.")
    # Set the model to evaluation mode
    model.eval()
    # Initialize the number of correct predictions to 0
    correct = 0
    # Turn off gradient calculation during inference
    with torch.no_grad():
        # Loop through the test data
        for data, target in test_loader:
            # Move the data and target tensors to the GPU if args.cuda is True
            if args.cuda:
                data, target = data.cuda(), target.cuda()
            # Compute the output of the model on the input data
            output = model(data)
            # Compute the predictions from the output using the argmax operation
            pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
            # Compute the number of correct predictions and add it to the running total
            correct += pred.eq(target.data.view_as(pred)).cpu().sum()
    # Compute the test accuracy and print the result
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Accuracy: {}/{} ({:.1f}%)\n'.format(
        correct, len(test_loader.dataset), accuracy))
    # Return the test accuracy as a float
    return accuracy / 100.



if __name__ == '__main__':
    # Parse command line arguments using the parse_opt() function
    args = parse_opt()
    # Check if CUDA is available and set args.cuda flag accordingly
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    # Create the save directory if it does not exist
    if not os.path.exists(args.save):
        os.makedirs(args.save)

    # Create a new VGG model with the specified depth
    model = VGG(depth=args.depth)
    # Move the model to the GPU if args.cuda is True
    if args.cuda:
        model.cuda()
    # If args.model is not None, 
    # attempt to load a checkpoint from the specified file
    if args.model:
        if os.path.isfile(args.model):
            print("=> loading checkpoint '{}'".format(args.model))
            checkpoint = torch.load(args.model)
            args.start_epoch = checkpoint['epoch']
            best_prec1 = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'])
            print("=> loaded checkpoint '{}' (epoch {}) Prec1: {:f}"
                .format(args.model, checkpoint['epoch'], best_prec1))
        else:
            print("=> no checkpoint found at '{}'".format(args.model))
            
    # Print the model to the console
    print(model)
    # Initialize the total number of channels to 0
    total = 0
    # Loop through the model's modules and count the number of channels in each BatchNorm2d layer
    for m in model.modules():
        if isinstance(m, nn.BatchNorm2d):
            total += m.weight.data.shape[0]
    # Create a new tensor to store the absolute values of the weights of each BatchNorm2d layer
    bn = torch.zeros(total)
    # Initialize an index variable to 0
    index = 0
    # Loop through the model's modules again and 
    # store the absolute values of the weights of each BatchNorm2d layer in the bn tensor
    for m in model.modules():
        if isinstance(m, nn.BatchNorm2d):
            size = m.weight.data.shape[0]
            bn[index:(index+size)] = m.weight.data.abs().clone()
            index += size
    # Sort the bn tensor and compute the threshold value for pruning
    y, i = torch.sort(bn)
    thre_index = int(total * args.percent)
    thre = y[thre_index]
    
    # Initialize the number of pruned channels to 0 and 
    # create lists to store the new configuration and mask for each layer
    pruned = 0
    cfg = []
    cfg_mask = []
    # Loop through the model's modules a third time and 
    # prune each BatchNorm2d layer that falls below the threshold value
    for k, m in enumerate(model.modules()):
        if isinstance(m, nn.BatchNorm2d):
            # Compute a mask indicating which weights to keep and which to prune
            weight_copy = m.weight.data.abs().clone()
            mask = weight_copy.gt(thre).float().cuda()
            pruned = pruned + mask.shape[0] - torch.sum(mask)
            # Apply the mask to the weight and bias tensors of the BatchNorm2d layer
            m.weight.data.mul_(mask)
            m.bias.data.mul_(mask)
            # Record the new configuration and mask for this layer
            cfg.append(int(torch.sum(mask)))
            cfg_mask.append(mask.clone())
            # Print information about the pruning for this layer
            print('layer index: {:d} \t total channel: {:d} \t remaining channel: {:d}'.
                format(k, mask.shape[0], int(torch.sum(mask))))
        elif isinstance(m, nn.MaxPool2d):
            # If the module is a MaxPool2d layer, 
            # record it as an 'M' in the configuration list
            cfg.append('M')
    # Compute the ratio of pruned channels to total channels
    pruned_ratio = pruned/total
    # Print a message indicating that the pre-processing was successful
    print('Pre-processing Successful!')
    # Evaluate the pruned model on the test set and 
    # store the accuracy in the acc variable
    acc = test(model)
    
# ============================ Make real prune ============================

    # Print the new configuration to the console
    print(cfg)
    # Initialize a new VGG model with the pruned configuration
    newmodel = VGG(cfg=cfg)
    # Move the new model to the GPU if available
    if args.cuda:
        newmodel.cuda()
    # Compute the number of parameters in the new model 
    num_parameters = sum([param.nelement() for param in newmodel.parameters()])
    # Save the configuration above, number of parameters, and test accuracy to a file
    savepath = os.path.join(args.save, "prune.txt")
    with open(savepath, "w") as fp:
        fp.write("Configuration: \n"+str(cfg)+"\n")
        fp.write("Number of parameters: "+str(num_parameters)+"\n")
        fp.write("Test accuracy: "+str(acc))

    # Initialize variables for the masks corresponding to the start and end of each pruned layer
    layer_id_in_cfg = 0
    start_mask = torch.ones(3)
    end_mask = cfg_mask[layer_id_in_cfg]
    
    # Loop through the modules of the original and new models
    # Copy the weights and biases of each layer from the original model to the new model
    # Applying the appropriate masks to the weights and biases of the pruned layers
    for [m0, m1] in zip(model.modules(), newmodel.modules()):
        
        # ============================ BatchNorm Layers ============================
        # If the module is a BatchNorm2d layer, 
        # compute the indices of the non-zero weights and biases in the new model and 
        # copy them from the original model
        if isinstance(m0, nn.BatchNorm2d):
            # Compute the list of indices of the remaining channels in the current BatchNorm2d layer
            idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy())))
            # Resize the index list if it has only one element
            if idx1.size == 1:
                idx1 = np.resize(idx1,(1,))
            # Compute the weight of the current layer 
            # by copying only the weights of the remaining channels using the index list
            m1.weight.data = m0.weight.data[idx1.tolist()].clone()
            # Compute the bias of the current layer 
            # by copying the bias values of the original layer and then cloned
            m1.bias.data = m0.bias.data[idx1.tolist()].clone()
            # Compute the running mean of the current layer by 
            # copying the mean values of the original layer and then cloned
            m1.running_mean = m0.running_mean[idx1.tolist()].clone()
            # Compute the running variance of the current layer by 
            # copying the variance values of the original layer and then cloned
            m1.running_var = m0.running_var[idx1.tolist()].clone()
            # Update the masks for the next pruned layer
            layer_id_in_cfg += 1
            start_mask = end_mask.clone()
            if layer_id_in_cfg < len(cfg_mask):  # do not change in Final FC
                end_mask = cfg_mask[layer_id_in_cfg]
                
        # ============================ Conv2d Layers ============================
        # If the module is a Conv2d layer, 
        # compute the indices of the non-zero weights in the input and output channels and 
        # copy them from the original model
        elif isinstance(m0, nn.Conv2d):
            # Get the indices of input and output channels that are not pruned for this convolutional layer, 
            # by converting the start and end masks from the previous and current layers into numpy arrays, 
            # finding the non-zero elements, and removing the extra dimensions
            idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy())))
            idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy())))
            # Print the number of input and output channels that are not pruned
            print('In shape: {:d}, Out shape {:d}.'.format(idx0.size, idx1.size))
            # If either idx0 or idx1 has a size of 1, 
            # resize it to (1,) to avoid a broadcasting error.
            if idx0.size == 1:
                idx0 = np.resize(idx0, (1,))
            if idx1.size == 1:
                idx1 = np.resize(idx1, (1,))
            # Extract the weight tensor for this layer from the original model (m0) 
            # by selecting the input and output channels that are not pruned, 
            # and clone it to create a new tensor (w1)
            w1 = m0.weight.data[:, idx0.tolist(), :, :].clone()
            w1 = w1[idx1.tolist(), :, :, :].clone()
            m1.weight.data = w1.clone()
            
        # ============================ Linear Layers ============================
        # If the module is a Linear layer, 
        # compute the indices of the non-zero weights in the input channels and 
        # copy them from the original model
        elif isinstance(m0, nn.Linear):
            # Compute the list of indices of the remaining neurons/channels 
            # of the previous layer that connect to this current linear layer
            idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy())))
            # Resize the index list if it has only one element
            if idx0.size == 1:
                idx0 = np.resize(idx0, (1,))
            # Compute the weight of the current layer 
            # by copying only the weights of the remaining channels of the previous layer 
            # using the index list
            m1.weight.data = m0.weight.data[:, idx0].clone()
            m1.bias.data   = m0.bias.data.clone()

    torch.save({'cfg': cfg, 'state_dict': newmodel.state_dict()}, os.path.join(args.save, 'pruned.pth'))

    print(newmodel)
    model = newmodel
    test(model)

总结

本次课程完成了对VGG模型的剪枝训练,主要是复现论文中对BN层的 γ \gamma γ参数进行稀疏训练,得到对应的mask后对Conv2d、Batch Normalize以及Linear层进行剪枝,可以看到剪枝后的模型的参数量大大减少(71M=>9.6M),且预测准确率反而提高了(87.4%=>88.4%),而对YOLOv8采用该方法进行剪枝时,其精度会略微下降,但是其参数量会大大减少,具有可应用性,期待下基于YOLOv8的剪枝吧🤣

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/421932.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

快排的递归实现

快速排序是一种时间复杂度低&#xff0c;但会虽随着数组的顺序变化&#xff0c;因为其效率之高被称为快速排序&#xff0c;而 且其不稳定性也可以同过优化进行解决。 快速排序的实现有三种方法&#xff1a; 1.hoare版 其基本思想为&#xff1a;任取待排序元素序列中 的某元…

3、如何使用GDB来进行命令行debug

文章目录一、与前面的联系二、GDB的一些认识1、什么是gdb2、gdb作用3、gdb可实现的功能三、GDB常用的调试命令一、与前面的联系 对于前面说到的launch.json文件就是用于debug的配置文件&#xff0c;在前面的vscode中我们可以发现配置好launch.json文件之后进行调试&#xff0c…

攻防世界-web2(逆向加密算法)

打开链接是PHP源码 给了一串密文&#xff0c;并对这串密文进行了一系列操作加密&#xff0c;注释里说解密$miwen就是flag 在此我们先介绍一些PHP内置函数&#xff1a; strrev(string): 反转字符串 strlen(string): 返回字符串的长度 substr(string, start, length): 返回字符…

认识、使用C++vetor和array

目录 前言&#xff1a; 1.vector模板 1.1vector简介 1.2创建vector类对象 2.array模板 2.1array简介 2.2创建array类对象 3.比较中学习 4.怎么避免数组越界访问 前言&#xff1a; 指针的基础用法分了近三篇文章&#xff0c;结合数组、结构、共用体、字符串一起学习。相…

【Golang | http】使用http库完成一个简单的POST请求

引言 主要记录使用Golang实现一个POST请求所用到的小知识点 1、项目结构 客户端向服务端注册用户信息&#xff0c;服务端返回注册信息中的用户名 PS E:\goland-workspace\GolangLearning\http> tree /f 卷 文件 的文件夹 PATH 列表 卷序列号为 0C66-1433 E:. ├─client…

小样本学习FSL介绍

1 概念 小样本学习&#xff08;few-shot learning&#xff0c;FSL&#xff09;旨在从有限的标记实例&#xff08;通常只有几个&#xff09;中学习&#xff0c;并对新的、未见过的实例进行识别。 相比于传统的深度学习和机器学习方法&#xff0c;小样本学习能够更好地模拟人类的…

从C出发 22 --- 变量的作用域与生命期

问题 1 &#xff1a; 这样子定义一个不属于任何函数的变量正确吗? 问题 2 : 编译能通过吗? 问题 : 我们要打印的var 到底是 10 还是 100. 总结: 什么都不会输出&#xff0c;因为这里的 i ;是让局部变量的 i &#xff0c;程序会一直死循环 为什么都是 11&#xff0c;为什…

在构建个人想法时,使用哪个工具更好呢?Tana, AmpleNote 和 妙记多 Mojidoc的比较

笔记类 App 都很强调个人化&#xff0c;因为我们每个人会用不同的方法来做笔记、写日记。不过有一些框架可以帮助我们&#xff0c;比如子弹笔记&#xff08;Bullet Journal&#xff09;等。 Tana 和 Amplenote 都可以使用「标签」&#xff0c;尽管它们处理的方式、体验都大不相…

4.14~4.16学习总结

多线程&#xff1a; 同步代码块 格式&#xff1a;Synchronized(锁) { 操作共享数据的代码 } 特点1&#xff1a;锁默认打开&#xff0c;有一个线程进去了&#xff0c;锁自动关闭。 特点2&#xff1a;里面的代码全部执行完毕&#xff0c;线程处理&#xff0c;锁自动打开。 …

SaleSmartly(ss客服)怎么玩转Instagram自动化?

这段时间接触了不少粉丝&#xff0c;一直在说ins营销&#xff0c;说谁谁谁通过这个引流&#xff0c;结果爆了&#xff0c;那我们今天就来简单说一下。Instagram (IG) 是全球最大的照片和视频共享平台&#xff0c;拥有超过10亿的月活跃用户和 5 亿的日活跃Story用户。借助IG的强…

LNMP和论坛的搭建

系列文章目录 文章目录系列文章目录一、LNMP搭建1.承接上文搭建nginx服务2.Mysql数据库搭建3.安装配置 PHP 解析环境4.、部署 Discuz&#xff01;社区论坛 Web 应用总结一、LNMP搭建 1.承接上文搭建nginx服务 2.Mysql数据库搭建 1、安装Mysql环境依赖包 yum -y install \ n…

不限量免注册,极速体验AI助手

最近 ChatGPT 很火&#xff0c;火到每个人都想玩一把&#xff0c;由于受限&#xff0c;不是在搭梯子就是在搭梯子的路上&#xff0c;现在类 ChatGPT 产品&#xff0c;它终于来了。还是先简单秀一波操作&#xff1a;第一波&#xff1a;大数据记录中&#xff0c;涉及关键字快速检…

vue2路由(上)

路由的简介 什么是路由&#xff1f; 用生活上的例子&#xff0c;路由器上的接口对应一个主机。 而由key和values组成的映射关系就是路由 主要用于SPA单页面应用 就是根据你端口号后面的路径&#xff0c;看你有没有配置这个页面对应的组件&#xff0c;如果有&#xff0c;那么就…

批处理脚本用法总结

目录一、常用命令二、基本语法1. rem 和 ::2. echo 和 3. pause4. errorlevel5. title6. color7. goto 和 :三、常见用法1. 设置临时环境变量2. 启动CMD执行命令3. 打开环境变量窗口参考资料&#xff1a;批处理(Batch)&#xff0c;也称为批处理脚本。顾名思义&#xff0c;批处理…

零入门kubernetes网络实战-29->在同一个宿主机上基于虚拟网桥bridge链接不同网段的不同网络命名空间的通信方案

《零入门kubernetes网络实战》视频专栏地址 https://www.ixigua.com/7193641905282875942 本篇文章视频地址(稍后上传) 上一篇文章&#xff0c;我们分享了使用虚拟网桥来连接同网段的不同网络命名空间下的通信情况。 那么&#xff0c;本篇文章&#xff0c; 我们想测试一下&…

用ChatGPT快速阅读论文:3个步骤让你轻松阅读论文文档

引言 您是否曾经因为阅读论文而感到困难和无从下手&#xff1f;ChatDOC是一款专为您设计的人工智能工具&#xff0c;帮助您快速理解论文内容。通过上传文档&#xff0c;利用ChatGPT技术&#xff0c;您只需3个简单步骤&#xff0c;即可快速阅读论文&#xff0c;提高阅读效率。立…

[架构之路-162]-《软考-系统分析师》-3-作系统基本原理-进程管理

目录 前言&#xff1a; 3 . 1 操作系统概述 3.1.1 操作系统的类型 2 . 批处理系统 3 . 分时操作系统 4 . 网络操作系统 5 . 分布式操作系统 6 . 嵌入式操作系统 3.1.2 操作系统的软件结构 1 . 整体结构 2 . 层次结构 3 . 客户/服务器结构 4 . 面向对象结构 3 . 2…

一文总结 Shiro 实战教程

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

InstructGLM:基于ChatGLM-6B在指令数据集上进行微调

InstructGLM 基于ChatGLM-6BLoRA在指令数据集上进行微调 https://github.com/yanqiangmiffy/InstructGLM 本项目主要内容&#xff1a; &#x1f680; 2023/4/9 发布了基于100万条由BELLE项目生成的中文指令数据的Lora权重&#xff0c;具体可见output/belle/chatglm-lora.pt&a…

【Spring Boot】SpringBoot设计了哪些可拓展的机制?

文章目录前言SpringBoot核心源码拓展Initializer拓展监听器ApplicationListenerBeanFactory的后置处理器 & Bean的后置处理器AOP其他的拓展点前言 当我们引入注册中心的依赖&#xff0c;比如nacos的时候&#xff0c;当我们启动springboot&#xff0c;这个服务就会根据配置文…