Python调用GPT3.5接口的最新方法

news2025/1/11 3:00:02

        GPT3.5接口调用方法主要包括openai安装、api_requestor.py替换、接口调用、示例程序说明四个部分。

1 openai安装

        Python openai库可直接通过pip install openai安装。如果已经安装openai,但是后续提示找不到ChatCompletion,那么请使用命令“pip install -U openai”来升级openai。

2 api_requestor.py替换

        Python openai安装完成之后,会产生api_requestor.py文件,文件位于python环境库文件目录下“site-packages\openai\api_requestor.py”,如下所示。将该文件进行替换,在公众号乐乐感知学堂中回复api35即可获得用来替换的文件。

Windows:
C:\ProgramData\Anaconda3\Lib\site-packages\openai\api_requestor.py
或
C:\ProgramData\Anaconda3\envs\xxx\lib\site-packages\openai\api_requestor.py
Linux:
/root/miniconda3/lib/pythonxx/site-packages/openaiapi_requestor.py
或
/root/miniconda3/envs/xxx/lib/pythonxx/site-packages/openaiapi_requestor.py
将该文件进行替换,在公众号乐乐感知学堂中回复api35即可获得用来替换的文件。

3 接口调用说明

        接口调用方式不变,与openai自身调用方式一致。输入主要有7个参数。

        (1)model:模型名称,gpt-3.5-turbo或gpt-3.5-turbo-0301

        (2)messages:问题或待补全内容,下面重点介绍。

        (3)temperature:控制结果随机性,0.0表示结果固定,随机性大可以设置为0.9。

        (4)max_tokens:最大返回字数(包括问题和答案),通常汉字占两个token。假设设置成100,如果prompt问题中有40个汉字,那么返回结果中最多包括10个汉字。ChatGPT API允许的最大token数量为4096,即max_tokens最大设置为4096减去问题的token数量。

        (5)top_p:设置为1即可。

        (6)frequency_penalty:设置为0即可。

        (7)presence_penalty:设置为0即可。

        (8)stream:控制连续输出或完整输出。

        需要注意,上述输入参数增加stream,即是否采用控制流的方式输出。

        如果stream取值为False,那么完全返回全部文字结果,可通过response.choices[0].delta['content']进行读取。但是,字数越多,等待返回时间越长,时间可参考控制流读出时的4字/每秒。如果steam取值为True时,那么返回结果是一个Python generator,需要通过迭代获取结果,平均大约每秒钟4个字(33秒134字,39秒157字)。读取程序如下所示.

4 message

        messages字段组成部分包括角色role和content问题两个部分组成,如下所示:

  model="gpt-3.5-turbo",
  messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Who won the world series in 2020?"},
        {"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
        {"role": "user", "content": "Where was it played?"}
    ]

        在gpt-3.5-turbo模型中,角色role包含system系统、assistant助手和用户user三种类型。System角色相当于告诉ChatGPT具体以何种角色回答问题,需要在content中指明具体的角色和问题内容。而gpt-3.5-turbo-0301主要区别在于更加关注问题内容,而不会特别关注具体的角色部分。gpt-3.5-turbo-0301模型有效期到6月1日,而gpt-3.5-turbo会持续更新。

        assistant助手和用户user则相当于已经指明了角色,content直接写入关注的问题即可。

5 示例程序

          (1)stream = False

import openai

def openai_reply(content, apikey):
    openai.api_key = apikey
    response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo-0301",#gpt-3.5-turbo-0301
    messages=[
    {"role": "user", "content": content}
    ],
    temperature=0.5,
    max_tokens=1000,
    top_p=1,
    frequency_penalty=0,
    presence_penalty=0,
    )
    # print(response)
    return response.choices[0].message.content


if __name__ == '__main__':
    content = '你是谁?'
    ans = openai_reply(content, '你的APIKEY')
    print(ans)

          (2)stream = True

import time
import openai

openai.api_key = "你的APIKEY"
response = openai.ChatCompletion.create(
  model="gpt-3.5-turbo",
  messages=[
    {"role": "user", "content": 'how are you'}
    ],
  temperature=0,
  max_tokens=1000,
  stream=True,
  top_p=1,
  frequency_penalty=0,
  presence_penalty=0,
  user='RdFast智能创作机器人小程序'
)

print(response)
print('response["choices"][0]["text"]结果如下所示:')
ans = ''
for r in response:
    if 'content' in r.choices[0].delta:
      ans += r.choices[0].delta['content']
      print(ans)

print(ans)

 3 API调用效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/421229.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

07平衡负载:gRPC是如何进行负载均衡的?

负载均衡(Load Balance),其含义就是指将请求负载进行平衡、分摊到多个负载单元上进行运行,从而协同完成工作任务。 负载均衡的主要作用: 提升并发性能:负载均衡通过算法尽可能均匀的分配集群中各节点的工作量,以此提高集群的整体的吞吐量。 提供可伸缩性:可添加或减少服…

【react 全家桶】状态提升

本人大二学生一枚&#xff0c;热爱前端&#xff0c;欢迎来交流学习哦&#xff0c;一起来学习吧。 <专栏推荐> &#x1f525;&#xff1a;js专栏 &#x1f525;&#xff1a;vue专栏 &#x1f525;&#xff1a;react专栏 08 【状态提升】 文章目录08 【状态提升】1.介绍…

【Python实战】Python采集二手车数据——超详细讲解

前言 今天&#xff0c;我们将采集某二手车数据&#xff0c;通过这个案例&#xff0c;加深我们对xpath的理解。通过爬取数据后数据分析能够直观的看到二手车市场中某一品牌的相对数据&#xff0c;能够了解到现在的二手车市场情况&#xff0c;通过分析数据看到二手车的走势&#…

C++初阶 -1- C++入门part2-引用

文章目录6.引用什么是引用&#xff1f;引用的使用引用的应用传值、传引用效率比较权限引用和指针的区别⭐7.内联函数8.auto关键字9.基于范围的for循环10.指针空值——nullptr6.引用 什么是引用&#xff1f; “别名” int a 0; int& b 0;&#x1f446;即 地址为0x00000…

Redis7搭建主从+集群三主三从主从关系由集群分配

目录文件不清晰的去Redis7搭建主从哨兵了解 别忘记关闭防火墙 hash算法一致性 1背景–主从关系由客户端构建分配 三台虚拟机&#xff0c;一台虚拟机搭建两个redis 且两个不同的端口 第一台ip和分配两个端口 6381 6382 --- 192.168.154.128 6381 6382 第二台ip和分配两个…

分析型数据库:分布式分析型数据库

分析型数据库的另外一个发展方向就是以分布式技术来代替MPP的并行计算&#xff0c;一方面分布式技术比MPP有更好的可扩展性&#xff0c;对底层的异构软硬件支持度更好&#xff0c;可以解决MPP数据库的几个关键架构问题。本文介绍分布式分析型数据库。 — 背景介绍— 目前在分布…

人工智能前沿——「全域全知全能」人类新宇宙ChatGPT

&#x1f680;&#x1f680;&#x1f680;OpenAI聊天机器人ChatGPT——「全域全知全能」人类全宇宙大爆炸&#xff01;&#xff01;&#x1f525;&#x1f525;&#x1f525; 一、什么是ChatGPT?&#x1f340;&#x1f340; ChatGPT是生成型预训练变换模型&#xff08;Chat G…

springBoot --- mybatisPlus自动生成代码

mybatisPlus自动生成代码mybatisPlus自动生成代码pom.xmlapplication.yml自动生成代码测试主启动类生成目录结果使用插件 --- 版本要求&#xff1a;3.4.0 版本以上pom.xml更新mybatisplus插件版本mp报错‘AutoGenerator()‘ has private access in ‘com.baomidou.mybatisplus.…

离散数学_九章:关系(2)

关系9.2 n元关系及其应用 1、n元关系&#xff0c;关系的域&#xff0c;关系的阶2、数据库和关系 1. 数据库 2. 主键 3. 复合主键 3、n元关系的运算 1. 选择运算 (Select) 2. 投影运算 (Project) 3. 连接运算 9.2 n元关系及其应用 n元关系&#xff1a;两个以上集合的元素间…

网络安全从业人员应该如何提升自身的web渗透能力?

前言 web 渗透这个东西学起来如果没有头绪和路线的话&#xff0c;是非常烧脑的。 理清 web 渗透学习思路&#xff0c;把自己的学习方案和需要学习的点全部整理&#xff0c;你会发现突然渗透思路就有点眉目了。 程序员之间流行一个词&#xff0c;叫 35 岁危机&#xff0c;&am…

Amazon SageMaker测评分享,效果超出预期

一、前言随着科技的进步和社会的发展&#xff0c;人工智能得到了愈加广泛的重视&#xff0c;特别是最近大火的Chatgpt&#xff0c;充分展现了研发通用人工智能助手广阔的研究和应用前景。让越来越多的组织和企业跟风加入到人工智能领域的研究中&#xff0c;但机器学习的实施是一…

项目---基于TCP的高并发聊天系统

目录 服务端 服务端视角下的流程图 一、数据库管理模块 1.1 数据库表的创建 1.2 .对于数据库的操作 1.2.1首先得连接数据库 1.2.2执行数据库语句 1.2.3 返回数据库中存放的所有用户的信息 1.2.4返回数据库中存放的所有用户的好友信息 二、用户管理模块 2.1、UserInfo类&…

深度学习和人工智能之间是什么样的关系?

深度学习与人工智能概念的潜在联系&#xff0c;我们依然借助维恩图来说明&#xff0c;如图4.1所示。 1、人工智能 “人工智能”这个概念新鲜时髦但又含混模糊&#xff0c;同时包罗万象。尽管如此,我们仍尝试对 人工智能进行定义:用一台机器处理来自其周围环境的信息,然后将这些…

学习系统编程No.10【文件描述符】

引言&#xff1a; 北京时间&#xff1a;2023/3/25&#xff0c;昨天摆烂一天&#xff0c;今天再次坐牢7小时&#xff0c;难受尽在不言中&#xff0c;并且对于笔试题&#xff0c;还是非常的困难&#xff0c;可能是我做题不够多&#xff0c;也可能是没有好好的总结之前做过的一些…

15.transformer全解

欢迎访问个人网络日志&#x1f339;&#x1f339;知行空间&#x1f339;&#x1f339; 文章目录1.基础介绍2.网络结构2.1 Input/Output Embedding2.2 自注意力机制 self-attention2.3 point-wise全连接层2.4 位置编码 Position Encoding3.输入处理过程示例4.代码实现1.基础介绍…

论文阅读和分析:Hybrid Mathematical Symbol Recognition using Support Vector Machines

HMER论文系列 1、论文阅读和分析&#xff1a;When Counting Meets HMER Counting-Aware Network for HMER_KPer_Yang的博客-CSDN博客 2、论文阅读和分析&#xff1a;Syntax-Aware Network for Handwritten Mathematical Expression Recognition_KPer_Yang的博客-CSDN博客 3、论…

自然语言处理(七): Deep Learning for NLP: Recurrent Networks

目录 1. N-gram Language Models 2. Recurrent Neural Networks 2.1 RNN Unrolled 2.2 RNN Training 2.3 (Simple) RNN for Language Model 2.4 RNN Language Model: Training 2.5 RNN Language Model: Generation 3. Long Short-term Memory Networks 3.1 Language M…

论文阅读【14】HDLTex: Hierarchical Deep Learning for Text Classification

论文十问十答&#xff1a; Q1论文试图解决什么问题&#xff1f; 多标签文本分类问题 Q2这是否是一个新的问题&#xff1f; 不是 Q3这篇文章要验证一个什么科学假设&#xff1f; 因为文本标签越多&#xff0c;分类就越难&#xff0c;所以就将文本类型进行分层分类&#xff0c;这…

【人工智能与深度学习】判别性循环稀疏自编码器和群体稀疏性

【人工智能与深度学习】判别性循环稀疏自编码器和群体稀疏性 判别类循环稀疏自编码器 (DrSAE)组稀疏组稀疏自编码器的问与答图像级别训练,无权重分享(weight sharing)的局域过滤器 (local filters)判别类循环稀疏自编码器 (DrSAE) DrSAE的设计结合了稀疏编码(稀疏自编码器)…

数据库并发控制基本概念和基本技术

并发控制与基本技术一、并发控制1. 概述2. 并发访问可能出现的问题二、并发控制的主要技术1、基本技术2、封锁及锁的类型2.1、什么是封锁2.2、基本封锁类型2.2.1、排它锁&#xff08;Exclusive Locks&#xff0c;简记为 X 锁&#xff09;2.2.2、共享锁&#xff08;Share Locks&…