对话ChatGPT:Prompt是普通人“魔法”吗?

news2024/11/23 5:58:50

        在ChatGPT、Midjourney、Stable Diffusion等新事物的作用下,不少人或多或少听说过Prompt的概念。

        虽然OpenAI掀起的大模型浪潮再度刷新了人们对AI的认知,但现阶段的AI终归还不是强人工智能,大模型里的“知识”存储在一个隐性空间里,需要输给AI正确的指令,也就是过去几个月中频频被讨论的Prompt。

        有人将Prompt翻译成“提示词”,也有人翻译为“激发词”。再感性一些,就像童话故事里的魔法一样,Prompt是AI时代的魔法,拥有它就拥有“巫师”一样的能力。


01 | Prompt是什么?

        并不难理解Prompt的字面含义,可为何会出现Prompt这个概念?既然是ChatGPT炒热的新名词,不妨让ChatGPT自己来回答。

        这个回答中规中矩,但还是可以提取到一些有价值的信息:一,Prompt继承了计算机编程里的命令行提示符,可以理解为控制AI的指令;二,在生成式AI的语境里,Prompt的价值在于引导,而非计算机里的命令。

        打个比方的话:大模型就像是人类的大脑,知识被存储在神经元联接中,只有当你遇到具体的问题时,就像“你最喜欢的食物是什么?”大脑才会给出确切的答案,Prompt等于是一个个具象的问题。由此产生了一种流行的说法,即提问比回答更重要。你使用ChatGPT所遇到的“边界”,实际上是你自己的“边界”。

        但Prompt的价值体现,并不在于ChatGPT代表的对话机器人,而是Midjourney为首的图像生成类应用。

        简单来说,你要告诉AI想要什么样的图,想要把自己脑海里的东西变成肉眼可见的图案,需要几十个单词作为Prompt。哪怕只有一个提示词的差异,AI所生成的图像都可能有着质的差别,怎么正确地给AI投喂Prompt,逐渐成了一门深奥的学问,并衍生出了提示语工程学(Prompt Engineering)的说法。

        以至于在衡量大模型的能力时,出现了三个标准:一是大模型的预训练水平;二是用来进行预训练语料数量和质量;三是提示语的水平。直接的例子就是外界对文心一言文生图的质疑,即使不考虑前两个因素,单单在提示词方面,就足以让文心一言和Midjourney拉开几条街的距离。

        因为在文心一言上想要生成图片,普遍给的指令是:帮我生成一张XXX(这也是百度官方的示例),解析为Prompt时注定只有几个提示词,远不足以表达脑海里想要的画面;同样的需求给Midjourney,可能是十几个乃至几十个提示词,大模型可以更准确地理解并输出用户想要图案。

        理解了这些差异,便不难读懂Prompt走红的原因。

        目前大模型对算力的要求很高,以OpenAI的DALL?E为例,生成一张图片的收费约0.02美元,如果让不懂Prompt的人去调用模型,大概率会浪费掉一次次算力。何况当前想要生成满意的图片,需要不断重复调整,能否熟练运用Prompt,直接左右了大模型所能释放的生产力。


02 | Prompt 还能赚钱?

        利用信息差赚钱向来是最容易做的生意,生成式AI也不例外,Prompt作为AI时代的魔法,已然成了不少人用来“赚钱”的生产资料。

第一种:直接售卖Prompt。

        国外已经出现了PromptBase等明码标价的平台,涉及Midjourney、Stable Diffusion、DALL?E、GPT等多个模型,而且适用的场景越来越细分,包括音乐创作、儿童插画、油画艺术、人物肖像等等,即便是不擅长整理提示词的普通用户,也可以直接复制Prompt生成相对不错的作品。

        其实国内也有类似的现象,一些商家早已在电商平台上兜售Prompt,也有一些人将Prompt做成面向垂直任务场景的应用,比如AI 写评语、AI写邮件、AI翻译等等,吸引刚需用户按月付费使用。

第二种:用Prompt换流量。

        国内最早一批售卖AI课程的自媒体,多半将Prompt作为吸引用户付费的筹码;小红书等年轻人扎堆的平台上,早早出现了分享Prompt的笔记;B站、抖音等视频平台上,教用户使用Prompt的教程已不可计数。

        个中逻辑并不复杂。Prompt是驾驭AI的“咒语”,但提示词本身并没有版权效应,或许直接兜售Prompt可以快速变现,终归是不长久的买卖。将Prompt作为涨粉工具,趁机吸引到可观的粉丝群体,在流量变相高度繁荣的互联网江湖,无疑更符合市场规律,也是Prompt被广泛讨论的另一重诱因。

第三种:靠Prompt“找工作”

        正如前面所提到的,正确使用Prompt已经是提升生产力的前提,不单单产生了提示语工程,还酝酿出了一批“提示词工程师”(Prompt Engineer)。

        国外一位名叫Riley Goodside的小哥,靠ChatGPT的Prompt快速涨粉,然后被硅谷独角兽Scale AI聘请为“提示词工程师”,据说年薪高达百万人民币;另一位名为Jason M. Allen的艺术家,则使用Midjourney赢得了Colorado State Fair周年艺术比赛……如果说计算机时代的能力密码是编程,在生成式AI席卷全球的当下,Prompt正悄悄成为数以万计打工人“傍身”的工具。

        至少就目前来看,程序员群体里已经渐渐兴起两股风潮:一类人瞄准了OpenAI等大模型企业的API,想要坐在人工智能的副驾驶上创业;另一类人打起了创造Prompt的主意,想要利用信息差赚到第一桶金。

        倘若ChatGPT的出现当真是所谓的iPhone时刻,围绕Prompt的生意其实才刚刚开场。


03 | Prompt 只是过渡?

        相对应的一个问题是,Prompt是否是人工智能大众化不可或缺的一环?这个问题的答案直接影响着Prompt和Prompt Engineer的红利周期。

        Open AI 的 CEO Sam Altman曾公开表示:五年后,就不再需要 Prompt Engineering。也许在接下来的一段时间里,我们仍需要提示语,需要去创造 Prompt,但生成式AI的发展速度可能超乎想象,AI对人类的理解力远未触达天花板。

        可以佐证的是,第一代iPhone上市时还没有App Store,仅预装了浏览器、iPod、邮件等少量应用,想要安装其他应用,需要在电脑上安装iTunes,用USB线将iPhone连接到电脑……为了解决用户体验上的局限性,越狱工具和第三方应用商店应运而生,但在苹果引入App Store后,越狱工具渐渐被丢进了历史的故纸堆。

        同样的问题询问ChatGPT,答案似乎客观了许多。

想要不用特定Prompt就能和AI流畅对话,ChatGPT认为需要解决四个挑战:

  • AI需要更好地理解语境和连贯性,哪怕用户像《大话西游》里的唐僧一样喋喋不休,或者语无伦次,AI也可以准确理解用户的意图,这样就不需要精确的提示词,用自然语言进行提问。
  • AI需要有丰富的常识和推理能力,即根据特定的信息和场景做出合理的回应,而非像现在的模型那样“对牛弹琴”,比如中文里的多义词、不同场景下不同含义的语气词,非常考验推理能力。
  • AI需要理解和处理情感信息,这也是当前AI研究的重心所在。人的情感可以有很多种表达方式,文字只是其中重要的一种。在大模型不断向多模态演进时,视觉和声音是否也可以传递信息?
  • AI需要有主动学习和适应能力。主动学习是指AI系统在学习过程中,能够主动选择最具信息量的样本进行学习,在数据稀缺的情况下做出更好的决策;适应能力是指AI在面临新的任务、场景或环境变化时,能够自我调整并优化其行为。

        按照ChatGPT的标准,在Prompt消失的时候,势必已经进入到了强人工智能时代,目前还有很长一段距离。

        Prompt及其衍生机会的消亡是一种历史必然,在时间上仍有很大的不确定性,也许会很快出现另一场技术爆炸;也许AI会进入新一轮的瓶颈期, Sam Altman的五年预期不过是“盲目乐观”。

04 | 写在最后

        或许可以借用科技媒体《VentureBeat》的说法:现在已经到了AI艺术的转折点,未来的艺术家无论是自学成才还是科班出身,都需要有创造Prompt的能力,需要理解和学习数据科学,以及大模型的工作原理。

        进一步延伸的话,需要有这些能力的绝不只是艺术家,任何职业、任何行业的工作都不可避免和AI协作,将人类的思考和需求注入给AI,不断更新、创造Prompt,将是大多数人必须要掌握的一种技能,就像现在必须要用输入法打字一样。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/417412.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

工地高空作业安全带穿戴识别 python

工地高空作业安全带穿戴识别系统通过pythonopencv网络模型分析技术,工地高空作业安全带穿戴识别算法模型对现场监控画面中人员安全绳安全带穿戴进行检测,不需人为干预立即触发告警存档。OpenCV的全称是Open Source Computer Vision Library,是…

【Ruby 2D】【unity learn】抬头显示血条

说起游戏开发,大家一般会觉得控制角色移动和制作血条哪个难呢? 或许都会觉得血条比较难吧。 是的,正是如此。 那么我们让我们来看看血条该怎么做吧 这是效果图 受伤后是这样的 首先是创建一张Canvas画布 这个画布会很大 相比之下我们的小…

【redis】BigKey

【redis】BigKey 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 例如:第一章 Python 机器学习入门之pandas的使用 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章…

ChatGPT云桌面:无需科技挂载,即点即用

ChatGPT是一个由OpenAI开发的人工智能对话语言模型。它被设计为对话式人工智能代理,用于客户服务、个人助理和文娱等任务。它可以理解并生成多种语言的文本,包括中文、英语、西班牙语、德语等。但从某些地方访问ChatGPT可能很困难,特别是在注…

实验4 Matplotlib数据可视化

1. 实验目的 ①掌握Matplotlib绘图基础; ②运用Matplotlib,实现数据集的可视化; ③运用Pandas访问csv数据集。 2. 实验内容 ①绘制散点图、直方图和折线图,对数据进行可视化; ②下载波士顿数房价据集,并…

机器学习 -- 过拟合与欠拟合以及应对过拟合的方法 神经网络中的超参数如何选择

前言 在学习机器学习的过程中,训练模型时常遇到的问题就是模型的过拟合和欠拟合,下文我将解释过拟合和欠拟合的概念,并且学习应对过拟合以及神经网络中的超参数如何选择的方法。 过拟合和与欠拟合 过拟合:是指学习时选择的模型…

基于 Git 的开发工作流——主干开发特性总结

在参与开发的过程,得益与平台提供便捷的开发流程,简化很多开发过程操作分支的步骤;也就很好奇,为什么研发平台怎么设计,考虑的点是为什么,便有了这次对主干研发的学习与记录。当我们是构建软件项目的唯一开…

【计算机网络-传输层】TCP 协议

文章目录1 传输层概述1.1 传输层的功能1.2 端口号2 TCP 报文段2.1 TCP 报文段首部格式2.2 TCP 数据传送的过程3 TCP 连接管理3.1 TCP 连接的建立——三次握手3.1.1 客户机向服务器发送 TCP 连接请求报文段3.1.2 服务器向客户机发送 TCP 连接请求确认报文段3.1.3 客户机向服务器…

python数据可视化玩转Matplotlib subplot子图操作,四个子图(一包四),三个子图,子图拉伸

目录 一、创建子图 1.1 下图是绘制的子图: 1.2 代码释义: 二、绘制子图 2.1 代码引入 2.2 图形绘制 三、子图布局 3.1 子图布局说明 四、子图大小 4.1 子图大小调整 五、子图间距 5.1 子图代码调整 六、子图位置 6.1 代码引入 6.2 完整代码…

如何在 Windows10 下运行 Tensorflow 的目标检测?

前言 看过很多博主通过 Object Detection 实现了一些皮卡丘捕捉,二维码检测等诸多特定项的目标检测。而我跟着他们的案例来运行的时候,不是 Tensorflow 版本冲突,就是缺少什么包,还有是运行官方 object_detection_tutorial 不展示…

算法记录 | Day30 回溯算法

332.重新安排行程 思路: 1.确定回溯函数参数:定义全局遍历存放path, 2.终止条件:遍历完所有路径,机场个数,如果达到了(航班数量1),即path的长度应当为字符串二维数组长…

教程 | 多通道fNIRS数据的预处理和平均(下)

前言 前文近红外数据的预处理和平均(上)提到fNIRS是一种评估氧和脱氧血红蛋白浓度变化的方法,可与fMRI相媲美。fNIRS的不足是它的空间分辨率比fMRI差,但其优点是有更高的时间分辨率,并允许测量无法通过fMRI扫描仪测试…

GPT-4 API 接口调用及价格分析

GPT-4 API 接口调用及价格分析 15日凌晨,OpenAI发布了万众期待的GPT-4!新模型支持多模态,具备强大的识图能力,并且推理能力和回答准确性显著提高。在各种专业和学术基准测试上的表现都媲美甚至超过人类。难怪OpenAI CEO Sam Altm…

动态规划专题(明天继续)

动态规划求最大值: 题目描述 小蓝在一个 nn 行 mm 列的方格图中玩一个游戏。 开始时,小蓝站在方格图的左上角,即第 11 行第 11 列。 小蓝可以在方格图上走动,走动时,如果当前在第 rr 行第 cc 列,他不能…

ASIC-WORLD Verilog(3)第一个Verilog代码

写在前面 在自己准备写一些简单的verilog教程之前,参考了许多资料----asic-world网站的Verilog教程即是其一。这套教程写得极好,奈何没有中文,在下只好斗胆翻译过来(加了自己的理解)分享给大家。 这是网站原文&#xf…

Windows应急响应 -Windows日志排查,系统日志,Web应用日志,

「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」:对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 Windows日志分析一、查看日志二、日志分类三、筛选日志四、事件ID1、安全日志1.1、登录类…

基于Java+SSM+Vue的旅游资源网站设计与实现【源码(完整源码请私聊)+论文+演示视频+包运行成功】

博主介绍:专注于Java技术领域和毕业项目实战 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟 Java项目精品实战案例(200套) 目录 一、效果演示 二、…

【从零开始学Skynet】实战篇《球球大作战》(八):login代码设计

现在来编写我们的第二个服务——登录服务,在编写此服务时,建议大家对照着如下所示的流程图来看,知晓各个方法的作用,写起来会简单许多。 1、登录协议 定义如下图所示的登录协议: 客户端需要发送玩家账号和密码&#x…

MyBatis 源码解析 面试题总结

MyBatis源码学习环境下载 文章目录1、工作原理1.1 初始化1.1.1 系统启动的时候,加载解析全局配置文件和相应的映射文件1.1.2 建造者模式帮助我们解决复杂对象的创建:1.2 处理SQL请求的流程1.2.1 通过sqlSession中提供的API方法来操作数据库1.2.2 获取接口…

UOS内核替换kylin内核

一、替换UOS内核 如果可以获取UOS的的ROOT权限, 跳过步骤一和二。 步骤一、配置环境 如果有UOS系统的机器,则不需要安装,跳到步骤二 。 如果没有UOS系统则需要下载, 下载UOS镜像:统信UOS生态社区 - 打造操作系统创新生态 ,下载专业版需要用户注册大概1~3天可以通过,…