计算机图形学09:二维观察之点的裁剪

news2024/11/29 2:43:32

在这里插入图片描述

作者:非妃是公主
专栏:《计算机图形学》
博客地址:https://blog.csdn.net/myf_666
个性签:顺境不惰,逆境不馁,以心制境,万事可成。——曾国藩
在这里插入图片描述

文章目录

  • 专栏推荐
  • 专栏系列文章
  • 一、二维观察基本流程
  • 二、算法原理
  • 三、OpenGL代码实现
  • 四、效果展示
  • the end……

专栏推荐

专栏名称专栏地址
软件工程专栏——软件工程
计算机图形学 专栏——计算机图形学
操作系统专栏——操作系统
软件测试专栏——软件测试
机器学习专栏——机器学习
数据库专栏——数据库
算法专栏——算法

专栏系列文章

文章名称文章地址
直线生成算法(DDA算法)计算机图形学01——DDA算法
中点BH算法绘制直线计算机图形学02——中点BH算法
改进的中点BH算法计算机图形学03——改进的中点BH算法
中点Bresenham画椭圆计算机图形学04——中点BH绘制椭圆
中点BH算法绘制任意斜率直线计算机图形学05——中点BH算法绘制任意斜率的直线
中点Bresenham画圆计算机图形学06——中点BH算法画圆
有效边表法的多边形扫描转换计算机图形学07——有效边表法绘制填充多边形
中点BH算法绘制抛物线 100 x = y 2 100x = y^2 100x=y2计算机图形学08——中点BH绘制抛物线
二维观察之点的裁剪计算机图形学09——二维观察之点裁剪
二维观察之线的裁剪计算机图形学10——二维观察之线裁剪
二维观察之多边形的裁剪计算机图形学11——二维观察之多边形裁剪
二维图形的几何变换计算机图形学12——二维图形几何变换
三维图形的几何变换计算机图形学13——三维图形几何变换
三维图形的投影变换计算机图形学14——三维图形投影变换

计算机图形学(英语:computer graphics,缩写为CG)是研究计算机在硬件和软件的帮助下创建计算机图形的科学学科,是计算机科学的一个分支领域,主要关注数字合成与操作视觉的图形内容。虽然这个词通常被认为是指三维图形,事实上同时包括了二维图形以及影像处理。


一、二维观察基本流程

在这里插入图片描述

在二维观察中,需要在观察坐标系下对窗口进行裁剪,即只保留窗口内的那部分图形,去掉窗口外的图形。


二、算法原理

在这里插入图片描述
在这里插入图片描述
其中:

  • wxl表示显示窗口左边界(window x left)。
  • wxr表示显示窗口右边界(window x right)。
  • wyb表示显示窗口左边界(window y below)。
  • wyt表示显示窗口左边界(window y top)。

三、OpenGL代码实现

算法代码如下:

/// <summary>
/// 点的裁剪
/// </summary>
/// <param name="pnts">储存点的数组</param>
/// <param name="wxl">窗口的左边缘</param>
/// <param name="wxr">窗口的右边缘</param>
/// <param name="wyb">窗口的下边缘</param>
/// <param name="wyt">窗口的上边缘</param>
/// <returns>在窗口内的点的数组</returns>
vector<VERTEX> cropPoint(vector<VERTEX> pnts, int wxl, int wxr, int wyb, int wyt) {
	vector<VERTEX> res;
	for (int i = 0; i < pnts.size(); i++) {
		VERTEX tmp;
		tmp.x = pnts[i].x;
		tmp.y = pnts[i].y;
		if (tmp.x > wxl && tmp.x<wxr && tmp.y>wyb && tmp.y < wyt) {
			res.push_back(tmp);
		}
	}
	return res;
}

测试代码及 OpenGL 代码框架如下:

void drawPoints1() {
	vector<VERTEX> res = _polygon;
	glColor3f(1.0f, 0.0f, 0.0f);			// 设置颜色为红色进行填充
	glPointSize(5);
	glBegin(GL_POINTS);
	
	for (int i = 0; i < res.size(); i++) {
		glVertex2i(res[i].x, res[i].y);
	}
	glEnd();
}

void drawPoints2() {
	vector<VERTEX> res = cropPoint(_polygon, 20, 200, 30, 200); 
	glColor3f(1.0f, 0.0f, 0.0f);			// 设置颜色为红色进行填充
	glPointSize(5);
	glBegin(GL_POINTS);
	
	for (int i = 0; i < res.size(); i++) {
		glVertex2i(res[i].x, res[i].y);
	}
	glEnd();
}

// 显示图形
void Display(void) {
	glClear(GL_COLOR_BUFFER_BIT);		//用当前背景色填充窗口
	glColor3f(0.0f, 0.0f, 0.0f);
	
	// 此处需增加调用基本图形生成函数
	Bhline(20, 30, 200, 30);
	Bhline(200, 30, 200, 200);
	Bhline(200, 200, 20, 200);
	Bhline(20, 200, 20, 30);
	drawPoints1();
	
	glFlush();
}

// 第2个窗口中的图形绘制
void Displayw(void)
{
	glClear(GL_COLOR_BUFFER_BIT);
	glColor3f(0.0f, 0.0f, 0.0f);
	// 此处进行裁剪
	Bhline(20, 30, 200, 30);
	Bhline(200, 30, 200, 200);
	Bhline(200, 200, 20, 200);
	Bhline(20, 200, 20, 30);
	drawPoints2();

	glFlush();
}

// 键盘响应函数
void KeyEvent(unsigned char key, int x, int y) {
	switch (key) {
	case 'r':
	{
		glutPostRedisplay();
	}
	break;
	default: break;
	}
}

int main(int argc, char* argv[]) {
	VERTEX p[7] = { {210, 160}, {90, 240}, {30, 140}, {90, 20}, {180, 100}, {240, 20}, {360, 180} };
	for (int i = 0; i < 7; i++)	_polygon.push_back(p[i]);

	glutInit(&argc, argv);								// glut初始化
	glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);		// 初始化窗口的显示模式
	glutInitWindowSize(winWidth, winHeight);			// 设置窗口的尺寸
	glutInitWindowPosition(0, 200);						// 设置窗口的位置
	glutCreateWindow("原始图形");						// 创建一个窗口
	glutDisplayFunc(Display);							// 设置当前窗口的显示回调函数
	glutReshapeFunc(ChangeSize);						// 指定窗口大小变化响应函数
	glutKeyboardFunc(KeyEvent);							// 指定键盘响应函数
	Initial();											// 完成窗口初始化

	glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
	glutInitWindowSize(winWidth, winHeight);			// 设置窗口的尺寸
	glutInitWindowPosition(50 + winWidth, 200);			// 设置窗口的位置
	glutCreateWindow("裁剪后的图形");
	glutDisplayFunc(Displayw);							// 设置当前窗口的显示回调函数
	glutReshapeFunc(ChangeSize);						// 指定窗口大小变化响应函数
	Initial();

	glutMainLoop();										//启动主GLUT事件处理循环
	return 0;
}

四、效果展示

从图中可以看出,经过裁剪,只剩下了方框内的点。

在这里插入图片描述


the end……

有效边表法的多边形扫描转换算法到这里就要结束啦~~到此既是缘分,欢迎您的点赞评论收藏关注我,不迷路,我们下期再见!!

😘😘😘 我是Cherries,一位计算机科班在校大学生,写博客用来记录自己平时的所思所想!
💞💞💞 内容繁杂,又才疏学浅,难免存在错误,欢迎各位大佬的批评指正!
👋👋👋 我们相互交流,共同进步!

:本文由非妃是公主发布于https://blog.csdn.net/myf_666,转载请务必标明原文链接:https://blog.csdn.net/myf_666/article/details/128508578

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/402061.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

设计模式4——行为型模式

行为型模式用于描述程序在运行时复杂的流程控制&#xff0c;即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务&#xff0c;它设计算法与对象间职责的分配。 行为型模式分为类行为模式和对象行为模式&#xff0c;前者采用继承机制来在类间分派行为&…

[洛谷-P1272] 重建道路(树形背包DP)

[洛谷-P1272] 重建道路&#xff08;树形背包DP&#xff09;一、题目重建道路题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1提示样例解释限制与约定二、思路1、状态表示2、转移方程3、循环设计4、初末状态三、代码一、题目 重建道路 题目描述 一场可怕的地震后&…

计算机Ping命令使用详解

计算机Ping命令使用详解 在网络中 ping 是一个十分强大的 TCP/IP 工具。它的作用主要为: 1、用来检测网络的连通情况和分析网络速度 2、根据域名得到服务器 IP 3、根据 ping 返回的 TTL 值来判断对方所使用的操作系统及数据包经过路由器数量。 我们通常会用它来直接 ping ip 地…

uni-app api 获取系统信息(高、宽)用法及封装

uni-app提供了异步(uni.getSystemInfo)和同步(uni.getSystemInfoSync)的2个API获取系统信息 uniapp 官网解析地址 uni.getSystemInfo 异步获取系统信息 参数名类型必填说明successFunction是接口调用成功的回调failFunction否接口调用失败的回调函数completeFunction否接口…

腾讯混元AI大模型训练技术揭秘——太极AngelPTM

编者按&#xff1a;秉承“技术提效”理念&#xff0c;腾讯广告不断探索技术能力边界&#xff0c;全面升级广告系统&#xff0c;基于“一大平台、两大模型”持续精进创新研发&#xff0c;提升投放效率与投放效果&#xff0c;助力广告主实现高效的全域经营与生意增长。本篇文章是…

请介绍类加载过程,什么是双亲委派模型?

第23讲 | 请介绍类加载过程&#xff0c;什么是双亲委派模型&#xff1f; Java 通过引入字节码和 JVM 机制&#xff0c;提供了强大的跨平台能力&#xff0c;理解 Java 的类加载机制是深入 Java 开发的必要条件&#xff0c;也是个面试考察热点。 今天我要问你的问题是&#xff0…

ESP32驱动-红外寻迹传感器驱动

红外寻迹传感器驱动 1、红外寻迹传感器介绍 红外寻迹传感器具有一对红外线发射管与接收管,发射管发射出一定频率的红外线,当检测方向遇到障碍物(反射面)时,红外线反射回来被接收管接收,经过比较器电路处理之后,输出接口会输出一个数字信号(低电平或高电平,取决于电路…

JVM篇之内存及GC

目录一、JVM内存区域1.1程序计数器1.2虚拟机栈1.3本地方法栈1.4堆1.5方法区二、JVM运行时内存2.1新生代(轻量级GC)2.2老年代&#xff08;重量级GC&#xff09;一、JVM内存区域 JVM 内存区域主要分为线程私有区域【程序计数器、虚拟机栈、本地方法栈】、线程共享区域【JAVA 堆、…

蓝桥杯嵌入式PWM_IN(打开中断)

1.原理图 2.配置 3.代码 关键函数 HAL_TIM_IC_Start_IT(&htim3,TIM_CHANNEL_1) HAL_TIM_IC_CaptureCallback(TIM_HandTypeDef *htim)//回调函数 HAL_TIM_GET_COUNTER(&htim3) __HAL_TIM_SetCounter(&htim3,0)void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef …

spring5源码篇(4)——beanFactoryPostProcessor执行/注解bean的装配

spring-framework 版本&#xff1a;v5.3.19 前面研究了beanDefinition的注册&#xff0c;但也仅仅是注册这一动作。那么在spring容器启动的过程中&#xff0c;是何时/如何装配的&#xff1f;以及装配的bean是如何注入的&#xff1f; &#xff08;考虑到xml方式基本不用了以及篇…

探秘MySQL——全面了解索引、索引优化规则

文章目录0.什么是索引1.常用索引分类逻辑维度底层数据结构维度物理维度&#xff08;InnoDB&#xff09;2.为什么底层是B树平衡二叉查找树红黑树B树&#xff08;多叉&#xff09;B树&#xff08;多叉&#xff09;3.MySQL索引优化SQL性能分析之explainQ.MySQL如何查看查询是否用到…

fastdfs提高系统连接数

1.操作系统 vi /etc/systemd/system.conf 修改后重启系统。 ulimit -n 验证是否生效。 2.tracker ①docker exec -it trackerID bin/bash ②vi /etc/fdfs/tracker.conf 一般性能测试场景可配置10000 3.storage ①docker exec -it storageID bin/bash ②vi /etc/fdfs/st…

k8s-Pod域名学习总结

k8s-Pod域名学习总结 大纲 k8s内置DNS服务 配置Pod的域名服务 CornDNS配置 默认Pod的域名 自定义Pod的域名 实战需求 1 Pod有自己的域名 2 集群内部的Pod可以通过域名访问其他的Pod 基础准备&#xff1a; 1 k8s 集群版本1.17 k8s内置DNS服务 k8s1.17安装完成后自动创建…

保姆级使用PyTorch训练与评估自己的MixMIM网络教程

文章目录前言0. 环境搭建&快速开始1. 数据集制作1.1 标签文件制作1.2 数据集划分1.3 数据集信息文件制作2. 修改参数文件3. 训练4. 评估5. 其他教程前言 项目地址&#xff1a;https://github.com/Fafa-DL/Awesome-Backbones 操作教程&#xff1a;https://www.bilibili.co…

【python】如何用canvas在自己设计的软件上作画

文章目录前言Canvas组件Canvas画布界面画长方体画多边形PhotoImage组件展示gif的图片展示gif法2总结前言 python学习之路任重而道远&#xff0c;要想学完说容易也容易&#xff0c;说难也难。 很多人说python最好学了&#xff0c;但扪心自问&#xff0c;你会用python做什么了&a…

数据结构——线性数据结构(C语言实现顺序表详解)

1.什么线性表 线性表&#xff08;linear list&#xff09;是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使 用的数据结构&#xff0c;常见的线性表&#xff1a;顺序表、链表、栈、队列、字符串等… 在讲顺序表之前&#xff0c;我们先大致了解一下线性表。…

qt .pro文件 qmake编译过程

#&#xff1a;注释一行 QT&#xff1a;此项目中使用的Qt modules列表 CONFIG&#xff1a;此项目中使用的配置选项 TARGET&#xff1a;目标输出文件的名字 TEMPLATE&#xff1a;当生成二进制文件时项目的模版&#xff0c;例如app,lib 平台下使用 windows { SOURCES SysInf…

剑指 Offer II 024. 反转链表

题目链接 剑指 Offer II 024. 反转链表 easy 题目描述 给定单链表的头节点 head&#xff0c;请反转链表&#xff0c;并返回反转后的链表的头节点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1] 示例 2&#xff1a; 输入&#xff1a;h…

不用费劲,这5款效率工具为你解决学习工作烦恼

今天我要向大家推荐5款超级好用的效率软件&#xff0c;无论是在学习还是办公中都能够极大地提高效率。这些软件可以帮助你解决许多问题&#xff0c;而且每个都是真正的神器。 1.键盘仿真鼠标——NeatMouse NeatMouse 是一个小型的工具能够使用鼠标光标控制指针。当你的鼠标不…

python编程基础

python编程基础 1、什么是编程语言&#xff1f; 编程语言是用来控制计算机的一系列指令&#xff08;Instruction&#xff09;&#xff0c;它有固定的格式和词汇&#xff08;不同编程语言的格式和词汇不一样&#xff09;&#xff0c;必须遵守&#xff0c;否则就会出错&#xf…