STM32F103R8T6 SPWM实现正弦波输出

news2025/1/11 14:52:38

前言

PWM合成正弦波,原理什么的不详细说了,概括一下就是 PWM有效面积的积分 = 正弦波的有效面积。PWM的频率越快,细分的越多,锯齿也就越不明显。

做法是:首先利用正弦波取点软件,取点1000个,生成一个正弦波的数组。

PWM波的频率(F_PWM)与正弦波频率(F_SIN)之间的对应关系与采样点数(S_NUM)有着密切的关系,即: F_SIN=F_PWM/S_NUM
S_NUM 在这里为1000,因为取了1000个点

先用TIM1高级定时器来生成一个PWM波作为载波,我用的是72M主频,分频系数0,TIM_Period填1000(这个1000就是PWM的总周期,要大于等于正弦波数组的满值)

再用TIM2来生成一段与正弦波能量等效的PWM载波 ,TIM2配置的是 分频系数0,计数值1440,得到TIM2的频率:72M/分频1(即分频器实际的分频为 分频系数+1)/1440 = 50000Hz ,即20us进入一次中断。

根据公式可以计算出F_SIN=F_PWM/S_NUM=50000Hz/1000=50Hz

先上代码:

#include "stm32f10x.h"
#include "bsp_rcc.h"
#include "bsp_tim.h"
#include "bsp_AdvanceTim.h"



int size=1000;
uint16_t sin_value[] = 
{
	500,503,506,509,512,515,518,521,525,528,531,534,537,540,543,547,
	550,553,556,559,562,565,568,572,575,578,581,584,587,590,593,596,
	599,602,606,609,612,615,618,621,624,627,630,633,636,639,642,645,
	648,651,654,657,660,663,666,669,672,675,678,681,684,686,689,692,
	695,698,701,704,707,710,712,715,718,721,724,726,729,732,735,738,
	740,743,746,749,751,754,757,759,762,765,767,770,773,775,778,781,
	783,786,788,791,793,796,798,801,803,806,808,811,813,816,818,821,
	823,825,828,830,833,835,837,839,842,844,846,849,851,853,855,857,
	860,862,864,866,868,870,872,875,877,879,881,883,885,887,889,891,
	893,895,896,898,900,902,904,906,908,909,911,913,915,917,918,920,
	922,923,925,927,928,930,931,933,935,936,938,939,941,942,944,945,
	946,948,949,951,952,953,955,956,957,958,960,961,962,963,964,966,
	967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,981,
	982,983,984,985,985,986,987,987,988,989,989,990,991,991,992,992,
	993,993,994,994,995,995,996,996,996,997,997,997,998,998,998,998,
	999,999,999,999,999,999,999,999,999,999,1000,999,999,999,999,999,
	999,999,999,999,999,998,998,998,998,997,997,997,996,996,996,995,
	995,994,994,993,993,992,992,991,991,990,989,989,988,987,987,986,
	985,985,984,983,982,981,981,980,979,978,977,976,975,974,973,972,
	971,970,969,968,967,966,964,963,962,961,960,958,957,956,955,953,
	952,951,949,948,946,945,944,942,941,939,938,936,935,933,931,930,
	928,927,925,923,922,920,918,917,915,913,911,909,908,906,904,902,
	900,898,896,895,893,891,889,887,885,883,881,879,877,875,872,870,
	868,866,864,862,860,857,855,853,851,849,846,844,842,839,837,835,
	833,830,828,825,823,821,818,816,813,811,808,806,803,801,798,796,
	793,791,788,786,783,781,778,775,773,770,767,765,762,759,757,754,
	751,749,746,743,740,738,735,732,729,726,724,721,718,715,712,710,
	707,704,701,698,695,692,689,686,684,681,678,675,672,669,666,663,
	660,657,654,651,648,645,642,639,636,633,630,627,624,621,618,615,
	612,609,606,602,599,596,593,590,587,584,581,578,575,572,568,565,
	562,559,556,553,550,547,543,540,537,534,531,528,525,521,518,515,
	512,509,506,503,500,496,493,490,487,484,481,478,474,471,468,465,
	462,459,456,452,449,446,443,440,437,434,431,427,424,421,418,415,
	412,409,406,403,400,397,393,390,387,384,381,378,375,372,369,366,
	363,360,357,354,351,348,345,342,339,336,333,330,327,324,321,318,
	315,313,310,307,304,301,298,295,292,289,287,284,281,278,275,273,
	270,267,264,261,259,256,253,250,248,245,242,240,237,234,232,229,
	226,224,221,218,216,213,211,208,206,203,201,198,196,193,191,188,
	186,183,181,178,176,174,171,169,166,164,162,160,157,155,153,150,
	148,146,144,142,139,137,135,133,131,129,127,124,122,120,118,116,
	114,112,110,108,106,104,103,101,99,97,95,93,91,90,88,86,
	84,82,81,79,77,76,74,72,71,69,68,66,64,63,61,60,
	58,57,55,54,53,51,50,48,47,46,44,43,42,41,39,38,
	37,36,35,33,32,31,30,29,28,27,26,25,24,23,22,21,
	20,19,18,18,17,16,15,14,14,13,12,12,11,10,10,9,
	8,8,7,7,6,6,5,5,4,4,3,3,3,2,2,2,
	1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,
	0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,
	3,3,3,4,4,5,5,6,6,7,7,8,8,9,10,10,
	11,12,12,13,14,14,15,16,17,18,18,19,20,21,22,23,
	24,25,26,27,28,29,30,31,32,33,35,36,37,38,39,41,
	42,43,44,46,47,48,50,51,53,54,55,57,58,60,61,63,
	64,66,68,69,71,72,74,76,77,79,81,82,84,86,88,90,
	91,93,95,97,99,101,103,104,106,108,110,112,114,116,118,120,
	122,124,127,129,131,133,135,137,139,142,144,146,148,150,153,155,
	157,160,162,164,166,169,171,174,176,178,181,183,186,188,191,193,
	196,198,201,203,206,208,211,213,216,218,221,224,226,229,232,234,
	237,240,242,245,248,250,253,256,259,261,264,267,270,273,275,278,
	281,284,287,289,292,295,298,301,304,307,310,313,315,318,321,324,
	327,330,333,336,339,342,345,348,351,354,357,360,363,366,369,372,
	375,378,381,384,387,390,393,397,400,403,406,409,412,415,418,421,
	424,427,431,434,437,440,443,446,449,452,456,459,462,465,468,471,
	474,478,481,484,487,490,493,496
};



int main(void)
{
	GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE);
	
	rcc_systempclock_init( RCC_PLLMul_9 );			//9倍频,时钟总线为72Mhz

	AdvanceTim_GPIO_Config();						//初始化高级定时器出PWM波的GPIO
	AdvanceTim_Mode_Config();						//初始化高级定时器,用来产生载波
	
	TIM2_NVIC_Config();								//TIM2的中断优先级
	timer2_init();									//初始化TIM2用来改变载波

	while(1)
	{
		
	}
}

bsp_AdvanceTim.c的内容如下:

#include "bsp_AdvanceTim.h"




void AdvanceTim_GPIO_Config(void)
{
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
	// RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
    GPIO_InitTypeDef GPIO_InitStruct;

    GPIO_InitStruct.GPIO_Pin = GPIO_Pin_8;
    GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA,&GPIO_InitStruct);
}

void AdvanceTim_Mode_Config(void)
{
    
    TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;        //配置时基结构体,声明一个结构体变量方便传参
    TIM_OCInitTypeDef TIM_OCInitStructure;                //配置输出比较结构体,声明一个结构体变量方便传参
    //TIM_BDTRInitTypeDef TIM_BDTRInitStructure;            //配置有关刹车和死区结构体,声明一个结构体变量方便传参

    //=====================时基初始化======================//
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);   //开TIMER1外设时钟
    
    TIM_TimeBaseStructure.TIM_Prescaler = 0;
    // 计数器计数模式
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_TimeBaseStructure.TIM_Period = 1000;

    // 时钟分频因子 - 一分频,配置死区时间需要用到
    TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV4;
    
    // 重复寄存器的值,没有用到,不管
    TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;

    TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure);

    //====================================================//

    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;   //PWM模式1
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;       //TIM1通道1输出使能
    TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable;    //互补通道使能
    TIM_OCInitStructure.TIM_Pulse = 0;               //占空比
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;           //高电平有效
    TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCPolarity_High;          //互补通道也是高电平有效
    TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;        //空闲状态 低电平
    TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;      //互补通道空闲状态 低电平
    TIM_OC1Init(TIM1,&TIM_OCInitStructure);                             //初始化TIM1通道1输出PWM

    TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable);                    //使能TIM1 输出比较1的预装载使能 想要改变占空比 得先输出完当前周期的波形之后 到下个波形才按照新的占空比(更新事件发生后才改变占空比)
    TIM_Cmd(TIM1,ENABLE);
    TIM_CtrlPWMOutputs(TIM1,ENABLE);
}

bsp_tim.c的内容如下:

#include "bsp_tim.h"


void TIM2_NVIC_Config(void)
{
    NVIC_InitTypeDef NVIC_InitStruct;

    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);

    NVIC_InitStruct.NVIC_IRQChannel = TIM2_IRQn;
    NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0;
    NVIC_InitStruct.NVIC_IRQChannelSubPriority = 3;
    NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;

    NVIC_Init(&NVIC_InitStruct);
}


void timer2_init(void)
{
    TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
    
    TIM_TimeBaseStructure.TIM_Prescaler = 0;
    // 计数器计数模式
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
    // 自动重装载寄存器的值 填入10000 实际上会计数10000+1次 因为10000需要-- 10001次才能发生下溢
    TIM_TimeBaseStructure.TIM_Period = 1440-1;

    // 时钟分频因子,配置死区时间需要用到
    TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
    
    // 重复寄存器的值,没有用到,不管
    TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;

    TIM_TimeBaseInit(TIM2,&TIM_TimeBaseStructure);

    // 清楚TIM2上溢中断标志位
    TIM_ClearFlag(TIM2,TIM_FLAG_Update);

    // 使能TIM2上溢中断
    TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);

    // 开启TIM2
    TIM_Cmd(TIM2,ENABLE);

}


void timer2_it_init(void)
{
    TIM2_NVIC_Config();
    timer2_init();
}

这个代码输出的效果就是,PA8引脚输出PWM波形,但是这个波形还需要通过一个低通滤波器之后,才能看到正弦波的波形。
电路如下:
在这里插入图片描述
在箭头处挂示波器,可以观察到正弦波的波形。

代码的原理就类似红外遥控那种,载波频率如果很高,那么合成出来的正弦波的锯齿就越不明显。同时,TIM2的频率也十分重要,他决定了正弦波的频率。

举例来说:
比如我现在要生成50Hz的正弦波,那么我取了1000个点,也就意味着,在50Hz即20ms这个总周期内,我需要跑完数组的1000个点,那么20ms/1000 = 20us ,所以TIM2的中断时间就必须是20us。

每隔20us,TIM2进入中断服务函数,查表之后,把TIM1生成的PWM的占空比更新一次,在没到20us这段期间,PWM还是按照当前的占空比不断输出,所以TIM1的频率越高,每20us中,含有的方波数就越多,精度也就越高,锯齿就会越细。当到达20us之后,更新占空比,PWM又按照新的占空比去输出波形。当数组1000个内容输出完之后,一个完整的正弦波就出来了,但是要注意的是这个正弦波没有负半周(以GND为参考点的话),因为我们的MCU输出不了负电压。

这个正弦波完整输出一次的时间就是20us(占空比改变一次)*1000(个点) = 20000us = 20ms 即50Hz。

我个人理解的基本原理就是这样,如果有误,欢迎指出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/399604.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机网络:OSPF协议和链路状态算法

OSPF协议 开放最短路经优先OSPF协议是基于最短路径算法SPF,其主要特征就是使用分布式的链路状态协议OSPF协议的特点: 1.使用泛洪法向自治系统中的所有路由器发送信息,即路由器通过输出端口向所有相邻的路由器发送信息,而每一个相邻的路由器又…

阶段二12_面向对象高级_继承3

知识点内容: 抽象类 模板设计模式 final关键字 一.抽象类 (1)抽象类概述 抽象方法:将共性的行为(方法)抽取到父类之后,发现该方法的实现逻辑 无法在父类中给出具体明确,该方法就可以定义为抽象方法。 抽…

ASP.NET CORE API 使用Orleans

快速使用Monimal API 快速集成Orleans 微软官网地址如下:https://learn.microsoft.com/zh-cn/dotnet/orleans/quickstarts/build-your-first-orleans-app?sourcerecommendations&tabsvisual-studio当然它的存储grain存储采用的是内存级别存储,我缓存…

JVM调优面试题——参数命令专题

文章目录1、JVM参数有哪些?1.1、 标准参数1.2、-X参数1.3、 -XX参数1.4、 其他参数1.5、 查看参数1.6、 设置参数的常见方式1.7、 常用参数含义2、JVM常用命令有哪些?2.1、jps2.2、jinfo2.3、jstat2.4、jstack2.5、jmap3、你会估算GC频率吗?4、 内存溢出…

【unity3D】创建TextMeshPro(TMP)中文字体(解决输入中文乱码问题)

💗 未来的游戏开发程序媛,现在的努力学习菜鸡 💦本专栏是我关于游戏开发的学习笔记 🈶本篇是unity的TMP中文输入显示乱码的解决方式 创建 TextMeshPro 中文字体遇到的问题描述解决方式Font Asset Creator 面板扩展中文字体文本遇到…

深度学习零基础学习之路——第五章 个人数据集的制作

Python深度学习入门 第一章 Python深度学习入门之环境软件配置 第二章 Python深度学习入门之数据处理Dataset的使用 第三章 数据可视化TensorBoard和TochVision的使用 第四章 UNet-Family中Unet、Unet和Unet3的简介 第五章 个人数据集的制作 深度学习数据集的制作Python深度学…

MySQL 行锁

行锁 : 对表中行记录的锁 MySQL 的行锁 : 由各个引擎自己实现MyISAM 不支持行锁InnoDB 支持行锁 两阶段锁协议 : 行锁是在需要时才加上,要等到事务结束才释放 例子 : id 是表 t 的主键的 B 的 update 会阻塞,直到 A 执行 commit 后,B 才能…

Spring Cloud/Spring Cloud Alibaba核心知识总结

Spring Cloud核心知识总结 springCloud是一个服务治理平台,若干个框架的集合,提供了全套的分布式系统的解决方案。包含:服务注册与发现、配置中心、服务网关、智能路由、负载均衡、断路器、监控跟踪、分布式消息、分布式事务等等。 SpringC…

Python机器学习库scikit-learn在Anaconda中的配置

本文介绍在Anaconda环境中,安装Python语言scikit-learn模块的方法。 scikit-learn库(简称sklearn)是一个基于Python语言的机器学习库,提供了各种机器学习算法和相关工具,包括分类、回归、聚类、降维、模型选择和预处理…

TiDB Server

文章目录TiDB Server架构TiDB Server作用TiDB Server的进程SQL语句的解析和编译SQL读写相关模块在线DDL相关模块GC机制与相关模块TiDB Server的缓存热点小表缓存TiDB Server架构 Protocol Layer、Parse、Compile负责sql语句的解析编译和优化,然后生成sql语句执行计划…

易优cms attribute 栏目属性列表

attribute 栏目属性列表 attribute 栏目属性列表 [基础用法] 标签:attribute 描述:获取栏目的属性列表,或者单独获取某个属性值。 用法: {eyou:attribute typeauto} {$attr.name}:{$attr.value} {/eyou:attri…

iperf3主页官方信息

​ iPerf 是一款支持TCP,UDP和SCTP的高速协议测试工具 网络极限性能测试网络中立性检测 主页 下载iPerf安装包 公共的iPerf3服务器 iPerf用户手册 iPerf论坛—法语 联系我们 iPerf / iPerf3简介 iPerf3是一款用于对IP网络的最大带宽进行主动测试的工具。提供对和时间&…

地质灾害防治单位资质

地质灾害危险性评估,是指在地质灾害易发区进行工程建设或者编制地质灾害易发区内的国土空间规划时,对建设工程或者规划区遭受山体崩塌、滑坡、泥石流、地面塌陷、地裂缝、地面沉降等地质灾害的可能性和建设工程引发地质灾害的可能性作出评估,…

VUE3入门基础:input元素的type属性值说明

说明 在Vue 3中&#xff0c;<input>元素的type属性可以设置不同的类型&#xff0c;以适应不同的输入需求。 常见的type属性取值如下&#xff1a; text&#xff1a;默认值&#xff0c;用于输入文本。password&#xff1a;用于输入密码&#xff0c;输入内容会被隐藏。em…

System has not been booted with systemd as init system (PID 1). Can‘t operate.

今天想查看防火墙的状态&#xff0c;但是对防火墙的操作还不熟悉&#xff0c;网上搜到的命令是这样的systemctl status firewalld 结果输入之后出现了这样的错误&#xff1a; System has not been booted with systemd as init system (PID 1). Can’t operate. 然后接着去网上…

老马闲评数字化「4」做数字化会不会被供应商拿捏住

原文作者&#xff1a;行云创新CEO 马洪喜 导语 开年过后业务特别的繁忙&#xff0c;出差也比较多&#xff0c;所以有段时间没更新了&#xff0c;对不住大家&#xff01; 上一集&#xff08;您可以查看“行云创新”主页阅读原文&#xff09;咱们聊了数字化转型的“想转、急转、…

计算机网络:BGP协议

BGP协议 与其他AS的邻站BPG发言人交换信息。 交换的网络可达性信息&#xff0c;即要到达某一个网络所要经历的一系列AS 发生变化时&#xff0c;更新有变化的部分 BGP协议交换信息的过程&#xff1a;所交换的网络可达性信息就是要到达某一个网络所要经历的一系列AS&#xff…

Oracle 11g创建和删除数据库实例

一、创建数据库实例 1.点击“开始” -> “Oracle -OraDb11g_home1” -> “Database Configuration Assistant” 2.点击“下一步” 3.选择“创建数据库”&#xff0c;点击“下一步” 4.默认设置&#xff0c;不用更改&#xff0c;直接点击“下一步” 5.填写要创建的“实例…

【Java基础 下】 030 -- 网络编程

目录 一、什么是网络编程 1、常见的软件架构&#xff08;CS & BS&#xff09; ①、BS架构的优缺点 ②、CS架构的优缺点 2、小结 二、网络编程三要素 1、IP ①、IPv4 ②、IPv6 ③、小结 ④、IPv4的一些细节 ⑤、InetAddress的使用 2、端口号 3、协议 ①、TCP & UDP 三、…

【项目实战】基于netty-websocket-spring-boot-starter实现WebSocket服务器长链接处理

一、背景 项目中需要建立客户端与服务端之间的长链接&#xff0c;首先就考虑用WebSocket&#xff0c;再来SpringBoot原来整合WebSocket方式并不高效&#xff0c;因此找到了netty-websocket-spring-boot-starter 这款脚手架&#xff0c;它能让我们在SpringBoot中使用Netty来开发…