Pytorch深度学习实战3-8:详解数据可视化组件TensorBoard安装与使用

news2024/11/17 23:37:49

目录

  • 1 什么是Tensorboard?
  • 2 Tensorboard安装
  • 3 Tensorboard可视化流程
  • 4 Tensorboard可视化实例
    • 4.1 常量可视化
    • 4.2 特征图可视化

1 什么是Tensorboard?

在深度学习领域,网络内部如同黑箱,其中包含大量的连接参数,这给人工调试造成极大的困难。Tensorboard则是神经网络的可视化工具,可以记录训练过程的数字、图像、运行图等内容,方便研究人员对训练参数进行统计,观察神经网络训练过程并指导参数优化。

在这里插入图片描述

2 Tensorboard安装

参考Anaconda安装与Python虚拟环境配置保姆级图文教程(附速查字典)创建一个实验用的虚拟环境。进入相应虚拟环境后,输入以下指令即可安装。

pip install tensorboardX
pip install tensorboard

安装完成后,进入环境

python
from torch.utils.tensorboard import SummaryWriter

若上述指令不报错即说明安装成功。

3 Tensorboard可视化流程

Tensorboard可视化过程主要为:

  • 为某次实验创建数据记录句柄

    writer = SummaryWriter(path)
    

    其中path是数据记录日志的存储路径。

  • 通过writer实例的add_xxx方法向日志写入不同类型的观察数据,主要类型有

    Scalars:在模型训练期间显示不同的有用信息
    Graphs:显示模型
    Histogram:使用直方图显示权重
    Distribution:显示权重分布
    Projector:显示主成分分析和T-SNE算法,用于降维

  • 启动Tensorboard可视化引擎

    tensorboard --logdir=<your_log_dir>
    

    其中<your_log_dir>可以是单次实验的日志所在路径,也可以是多次实验的父级目录,Tensorboard会自动横向比较各次实验曲线。

4 Tensorboard可视化实例

4.1 常量可视化

这边给大家提供一个很方便的装饰器,实现过程如下

from tensorboardX import SummaryWriter
import os, time


class Visualizer:
    def __init__(self) -> None:
        pass

    @staticmethod
    def visual_scale(title: str, path: str, cover: bool=True):
        '''
        * @breif: 可视化模型标量数据
        * @param[in]: title  -> 图表名称
        * @param[in]: path   -> 可视化数据存储路径
        * @param[in]: cover  -> 是否覆盖已有可视化数据
        '''
        def scale(func):
            def wrap(*args, **kwargs):
                writer = SummaryWriter(log_dir=Visualizer.coverFile(path, cover))
                result = func(*args, **kwargs)
                if len(result) > 0:
                    data_num = len(result[next(iter(result))])
                    for i in range(data_num):
                        writer.add_scalars(title, {k: v[i] for k, v in result.items()}, i)
                return result
            return wrap
        return scale

使用起来只需要一句话,注意要构造一个字典,记录将要传递给tensorboard的数据:

@visual_scale('loss', './log/fcnn')
def main(model, epochs: int, save: bool=False) -> None:
    # 生成优化器——随机梯度下降
    optimizer = torch.optim.SGD(model.parameters(), 1e-3)
    lossParam = {"trainLoss": [], "validLoss": []}
    for i in range(epochs):
        lossParam["trainLoss"].append(train(i, epochs, model, optimizer))
        lossParam["validLoss"].append(validate(i, epochs, model))
    if save:
        torch.save(model.state_dict(), r"model/{}.pth".format(model.__str__))
    return lossParam

在这里插入图片描述

在这里插入图片描述

4.2 特征图可视化

同样用装饰器的形式构造一个可视化卷积核的工具函数

def visual_kernal(title: str, path: str, append: bool=False):
    def kernal(func):
        def warp(*args, **kwargs):
            if not append and os.path.exists(path):
                delFiles(path)
            writer = SummaryWriter(log_dir=path)
            result = func(*args, **kwargs)
            try:
                model = kwargs['model']
                for name, param in model.named_parameters():
                    if 'conv' in name.lower() and 'weight' in name:
                        Cout, Cin, Kh, Kw = param.size()
                        kernelAll = param.reshape(-1, 1, Kw, Kh)  # 每个通道的卷积核
                        kernelGrid = vutils.make_grid(kernelAll, nrow=Cin)
                        writer.add_image(f'{title}--{name}', kernelGrid, global_step=0)
            except:
                raise AttributeError("被修饰函数传入的模型不存在或参数格式有误!")
            return result
        return warp
    return kernal

在这里插入图片描述


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/398536.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

续航乱标销量低迷! 零跑汽车短时“掉”电快 ?

【锋巢网】 进入3月&#xff0c;行业复苏的景象映入眼帘&#xff0c;但是新能源车企却有人欢喜有人愁。 近日&#xff0c;各大新能源车企公布了自家2月份的销量数据&#xff0c;整体来看&#xff0c;部分新能源车企在2月份的交付量战绩显著&#xff0c;涨幅颇高。其中&#x…

class01:VUE简介与实例挂载

目录一、VUE简介1. 介绍2. 学习内容3. 引入Vue4. 全局配置5. Vue Devtools安装二、挂载Vue实例一、VUE简介 1. 介绍 Vue 是一套用于构建用户界面的渐进式框架。与其它大型框架不同的是&#xff0c;Vue 被设计为可以自底向上逐层应用。Vue 的核心库只关注视图层&#xff0c;不…

九、CSS3新特性三

文章目录一、逐帧动画二、flex弹性盒子三、少量元素侧轴对齐方式四、折行侧轴对齐方式五、项目属性六、网格布局七、网格布局的对齐方式八、网格布局的项目合并一、逐帧动画 一张背景图&#xff0c;改变back-position-x的位置让他动起来 step-start 逐帧动画 animation: play …

宝塔webhook自动化打包vue项目时,npm不生效问题

文章目录&#x1f4cb;前言&#x1f3af;查看webhook配置的代码&#x1f3af;测试代码&#xff0c;检查输出内容&#x1f3af;解决方法&#x1f4cb;前言 这篇文章主要是记录和解决在宝塔面板中&#xff0c;webhook自动化打包vue项目时&#xff0c;npm不生效问题。说来奇怪&am…

【DBC专题】-10-CAN DBC转换C语言代码Demo_接收Rx报文篇

案例背景(共15页精讲)&#xff1a; 该篇博文将告诉您&#xff0c;CAN DBC转换C语言代码Demo&#xff0c;只需传递对应CAN信号关联参数&#xff0c;无需每个信号"左移"和"右移"&#xff0c;并举例介绍&#xff1a;在CANoe/Canalyzer中CAPL中的应用&#xff…

【MIT 6.S081】Lab1: Xv6 and Unix utilities

Util概述sleeppingpongprimesfindxargs本Lab包括五个应用程序的实现&#xff0c;初步熟悉系统调用接口。用时约8h&#xff08;我太菜辣&#xff09;本Lab包括五个简单程序的实现&#xff0c;初步熟悉系统调用接口。 笔者用时约6h&#xff08;我太菜辣&#xff09; 概述 根据文…

mysql数据库之全局锁

锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中&#xff0c;除传统的计算资源&#xff08;CPU、RAM、I/O&#xff09;的争用以外&#xff0c;数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题&#x…

【Day2】Numpy简单入门基础

NumPy 简单入门基础 我的另一篇文章 &#xff1a; Numpy介绍-深度学习&#xff1a;Numpy介绍-深度学习&#xff08;Numpy介绍深度学习使用看这些足够了&#xff09; import numpy as npmy_array np.array([1, 2, 3, 4, 5]) print(my_array)[1 2 3 4 5]print(my_array.shape)…

Kafka 多线程消费者

Kafka 多线程消费者多线程方案Kafka 0.10.1.0 后&#xff0c;Kafka Consumer 变为双线程的设计 : 用户主线程 : 启动 Consumer 的 main心跳线程 (Heartbeat Thread) : 定期对 Broker 发送心跳请求&#xff0c;探测消费者的存活性 (liveness&#xff09;将心跳频率与主线程处理…

MQTT协议-取消订阅和取消订阅确认

MQTT协议-取消订阅和取消订阅确认 客户端向服务器取消订阅 取消订阅的前提是客户端已经通过CONNECT报文连接上服务器&#xff0c;并且订阅了一个主题 UNSUBSCRIBE—取消订阅 取消订阅的报文同样是由固定报头可变报头有效载荷组成 固定报头由两个字节组成&#xff0c;第一个…

2023年,当我们谈论架构时,我们要聊什么

架构是一个非常宽泛的话题&#xff0c;从组织结构上来说&#xff0c;涉及到前端、后端、运维&#xff1b;从软件设计上来说&#xff0c;涉及到需求分析、设计、编码、测试&#xff1b;从物理结构上来说&#xff0c;涉及到CDN、负载均衡、网关、服务器、数据库。当前一些架构方面…

奇淫技巧:阅读源码时基于一组快捷键,让我们知道身在何方!

一个十分蛋疼的问题 在我们阅读框架底层源码的时候&#xff0c;我们往往会一个方法一个方法的往下翻&#xff0c;翻了很久很快就会有这样的灵魂拷问&#xff1a;我从那个类&#xff08;方法&#xff09;来&#xff0c;我要到哪个&#xff08;类&#xff09;方法中去。这个时候…

RK3568平台开发系列讲解(显示篇) DRM显示系统组成分析

🚀返回专栏总目录 文章目录 一、DRM Framebuffer二、CRTC三、Planes四、Encoder五、Connector沉淀、分享、成长,让自己和他人都能有所收获!😄 📢让我们分析一下绿框中的五个部件,以及他们的联动。 一、DRM Framebuffer 与 framebuffer一样,是一片存放图像的内存区域,…

敏捷开发还需要PRD吗

一、PRD有什么用 prd提升与RD或者未来接手人的沟通效率 二、为什么会有PRD 首先来说说为什么会有PRD文档。 1、稍微大一点的团队产品经理未必能向每个人传达产品需求&#xff0c;这就需要有一个文档的形式来向项目的所有成员来传达需求&#xff0c;这就是文档的来源。 2、由…

Python读写mdb文件的实战代码

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理…

MySQL的分库分表?通俗易懂

1- 为什么要分库分表 如果一个网站业务快速发展&#xff0c;那这个网站流量也会增加&#xff0c;数据的压力也会随之而来&#xff0c;比如电商系统来说双十一大促对订单数据压力很大&#xff0c;Tps十几万并发量&#xff0c;如果传统的架构&#xff08;一主多从&#xff09;&a…

【数据结构】解决顺序表题的基本方法

&#x1f680;write in front&#x1f680; &#x1f4dc;所属专栏&#xff1a;> 初阶数据结构 &#x1f6f0;️博客主页&#xff1a;睿睿的博客主页 &#x1f6f0;️代码仓库&#xff1a;&#x1f389;VS2022_C语言仓库 &#x1f3a1;您的点赞、关注、收藏、评论&#xff0…

java 4 (面向对象上)

java——面向对象&#xff08;上&#xff09; 目录java——面向对象&#xff08;上&#xff09;面向对象的思想概述类的成员&#xff08;1-2&#xff09;&#xff1a;属性和方法对象的内存解析类中属性的使用类中方法的使用1.举例&#xff1a;2.声明方法&#xff1a;3.说明4.re…

计算机网络基础知识点【1】

文章目录计算机网络第一章 计算机网络参考模型1.计算机网络为什么需要分层&#xff1f;1.1 分层思想1.2 分层好处2.OSI七层模型2.1 OSI七层模型总结2.2 OSI七层工作原理2.3 数据封装与解封装2.4 计算机网络常用协议3.TCP/IP参考模型3.1 什么是TCP/IP协议3.2 TCP/IP协议族的组成…

扬帆优配|引活水 增活力 促转型 创业板助力实体经济高质量发展

立异就是生产力&#xff0c;企业赖之以强&#xff0c;国家赖之以盛。全面注册制变革持续开释立异生机。日前&#xff0c;创业板公司已开端连续公布2022年度年度报告和2023年第一季度成绩预告&#xff0c;从频频传来的“喜报”中可窥见立异驱动开展战略下新兴工业的强劲开展态势…