写在前面:
1. 本文中提到的“K线形态查看工具”的具体使用操作请查看该博文;
2. K线形体所处背景,诸如处在上升趋势、下降趋势、盘整等,背景内容在K线形态策略代码中没有体现;
3. 文中知识内容来自书籍《K线技术分析》by邱立波。
目录
解说
技术特征
技术含义
K线形态策略代码
结果
解说
倒锤头线是K线实体很小,没有下影线或者下影线非常短,上影线一般大于或等于实体两倍的小阴线和小阳线。倒锤头线因K线形状像个倒转的锤头而得名。
射击之星又称流星、扫帚星,它们的K线形状和倒锤头线完全相同。不同之处在于:出现在股价大幅下跌之后的位置就是倒锤头线,出现在股价大幅上升之后的位置就是射击之星(流星、扫帚星)。
倒锤头线和射击之星都是转势信号,其中倒锤头线是见底信号,射击之星是见顶信号。
技术特征
1)倒锤头线出现在下跌图中,射击之星出现在上涨途中。
2)阳线或阴线实体很小,上影线大于或等于实体的两倍。
3)下影线很短或没有。
技术含义
1)股价或指数大幅下跌后出现倒锤头线,止跌回升的可能性较大。
2)股价或指数大幅上涨后出现射击之星,见顶回落的可能性较大。
K线形态策略代码
def excute_strategy(daily_file_path):
'''
名称:倒锤头线和射击之星(流星、扫帚星)
识别:
1. 锤头线是K线实体很小,没有下影线或下影线很短,上影线一般大于或等于实体两倍的小阴线和小阳线
自定义:
1. 实体很小的小阳线和小阴线=》实体长度超过上一交易日价格0.5%但不到1.5%的K线
2. 影线很短 =》不超过上一交易日价格 0.5%
前置条件:计算时间区间 2021-01-01 到 2022-01-01
:param daily_file_path: 股票日数据文件路径
:return:
'''
import pandas as pd
import os
start_date_str = '2021-01-01'
end_date_str = '2022-01-01'
df = pd.read_csv(daily_file_path,encoding='utf-8')
# 删除停牌的数据
df = df.loc[df['openPrice'] > 0].copy()
df['o_date'] = df['tradeDate']
df['o_date'] = pd.to_datetime(df['o_date'])
df = df.loc[(df['o_date'] >= start_date_str) & (df['o_date']<=end_date_str)].copy()
# 保存未复权收盘价数据
df['close'] = df['closePrice']
# 计算前复权数据
df['openPrice'] = df['openPrice'] * df['accumAdjFactor']
df['closePrice'] = df['closePrice'] * df['accumAdjFactor']
df['highestPrice'] = df['highestPrice'] * df['accumAdjFactor']
df['lowestPrice'] = df['lowestPrice'] * df['accumAdjFactor']
# 开始计算
df.loc[df['closePrice']>=df['openPrice'],'type'] = 1
df.loc[df['closePrice']<df['openPrice'],'type'] = -1
df['body_length'] = abs(df['closePrice'] - df['openPrice'])
df.loc[df['type']==1,'top_shadow_length'] = df['highestPrice'] - df['closePrice']
df.loc[df['type']==-1,'top_shadow_length'] = df['highestPrice'] - df['openPrice']
df.loc[df['type']==1,'bottom_shadow_length'] = df['openPrice'] - df['lowestPrice']
df.loc[df['type']==-1,'bottom_shadow_length'] = df['closePrice'] - df['lowestPrice']
df['signal'] = 0
df['signal_name'] = 0
short_len = 0.005
df.loc[(df['body_length']/df['closePrice'].shift(1)>0.005) & (df['body_length']/df['closePrice'].shift(1)<0.015) & (df['bottom_shadow_length']/df['closePrice'].shift(1)<short_len) & (df['bottom_shadow_length']/df['closePrice'].shift(1)<short_len) & (df['top_shadow_length']/df['body_length']>=2),'signal'] = 1
df.loc[(df['body_length']/df['closePrice'].shift(1)>0.005) & (df['body_length']/df['closePrice'].shift(1)<0.015) & (df['bottom_shadow_length']/df['closePrice'].shift(1)<short_len) & (df['bottom_shadow_length']/df['closePrice'].shift(1)<short_len) & (df['top_shadow_length']/df['body_length']>=2),'signal_name'] = df['top_shadow_length']/df['body_length']
df = df.round({'signal_name': 2})
file_name = os.path.basename(daily_file_path)
title_str = file_name.split('.')[0]
line_data = {
'title_str':title_str,
'whole_header':['日期','收','开','高','低'],
'whole_df':df,
'whole_pd_header':['tradeDate','closePrice','openPrice','highestPrice','lowestPrice'],
'start_date_str':start_date_str,
'end_date_str':end_date_str,
'signal_type':'line'
}
return line_data