Linux内核学习笔记——页表的那些事。

news2024/11/15 20:01:53

目录

  • 页表什么时候创建
  • 内核页表变化什么时候更新到用户页表
    • 源码分析
  • 常见问题解答
    • 问题一:页表到底是保存在内核空间中还是用户空间中?
    • 问题2:页表访问,软件是不是会频繁陷入内核?
    • 问题3:内存申请,软件是不是会频繁陷入内核创建新页表条目
    • 问题4:那内核页表和普通的页表到底有什么区别?

接上两文,本文补充一下内核页表和用户页表创建、更新时机说明。
Linux内核学习笔记——内核页表隔离KPTI机制
Linux内核学习笔记——内核页表隔离KPTI机制(源码分析)

KPTI中每个进程有两套页表——内核态页表与用户态页表(两个地址空间)。

内核态页表只能在内核态下访问,可以创建到内核和用户的映射(不过用户空间受SMAP和SMEP保护)。

  • 内核页表:即书上说的主内核页表,在内核中其实就是一段内存,存放在主内核页全局目录init_mm.pgd(swapper_pg_dir)中,硬件并不直接使用。

  • 进程页表:每个进程自己的页表,放在进程自身的页目录task_struct.pgd中。

在保护模式下,从硬件角度看,其运行的基本对象为“进程”(或线程),而寻址则依赖于“进程页表”,在进程调度而进行上下文切换时,会进行页表的切换:即将新进程的pgd(页目录)加载到CR3寄存器中。从这个角度看,其实是完全没有用到“内核页表”的,那么“内核页表”有什么用呢?跟“进程页表”有什么关系呢?

页表什么时候创建

内核页表中的内容为所有进程共享,每个进程都有自己的“进程页表”,“进程页表”中映射的线性地址包括两部分:

  • 用户态
  • 内核态
    其中,内核态地址对应的相关页表项,对于所有进程来说都是相同的(因为内核空间对所有进程来说都是共享的),而这部分页表内容其实就来源于“内核页表”,即每个进程的“进程页表”中内核态地址相关的页表项都是“内核页表”的一个拷贝(进程创建时候就产生了)。

内核页表变化什么时候更新到用户页表

“内核页表”由内核自己维护并更新,在vmalloc区发生page fault时,将“内核页表”同步到“进程页表”中。以32位系统为例,内核页表主要包含两部分:

  • 线性映射区
  • vmalloc区

其中,线性映射区即通过TASK_SIZE偏移进行映射的区域,对32系统来说就是0-896M这部分区域,映射对应的虚拟地址区域为TASK_SIZE~TASK_SIZE+896M这部分区域在内核初始化时就已经完成映射,并创建好相应的页表,即这部分虚拟内存区域不会发生page fault

vmalloc区,为896M~896M+128M,这部分区域用于映射高端内存,有三种映射方式:vmalloc、固定、临时,这里就不详细展开了。

以vmalloc为例(最常使用),这部分区域对应的线性地址在内核使用vmalloc分配内存时,其实就已经分配了相应的物理内存,并做了相应的映射,建立了相应的页表项,但相关页表项仅写入了“内核页表”,并没有实时更新到“进程页表中”,内核在这里使用了“延迟更新”的策略,将“进程页表”真正更新推迟到第一次访问相关线性地址,发生page fault时,此时在page fault的处理流程中进行“进程页表”的更新。

源码分析

/*
     * 缺页地址位于内核空间。并不代表异常发生于内核空间,有可能是用户
     * 态访问了内核空间的地址。
     */
    if (unlikely(fault_in_kernel_space(address))) {
        if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
            //检查发生缺页的地址是否在vmalloc区,是则进行相应的处理
            if (vmalloc_fault(address) >= 0)
                return;

/*
  * 对于发生缺页异常的指针位于vmalloc区情况的处理,主要是将
  * 主内核页表向当前进程的内核页表同步。
  */
static noinline __kprobes int vmalloc_fault(unsigned long address)
{
    unsigned long pgd_paddr;
    pmd_t *pmd_k;
    pte_t *pte_k;
 
    /* Make sure we are in vmalloc area: */
    /* 区域检查 */
    if (!(address >= VMALLOC_START && address < VMALLOC_END))
        return -1;
 
    WARN_ON_ONCE(in_nmi());
 
    /*
     * Synchronize this task's top level page-table
     * with the 'reference' page table.
     *
     * Do _not_ use "current" here. We might be inside
     * an interrupt in the middle of a task switch..
     */
     /*获取pgd(最顶级页目录)地址,直接从CR3寄存器中读取。
     *不要通过current获取,因为缺页异常可能在上下文切换的过程中发生,
     *此时如果通过current获取,则可能会出问题*/
    pgd_paddr = read_cr3();
    //从主内核页表中,同步vmalloc区发生缺页异常地址对应的页表
    pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
    if (!pmd_k)
        return -1;
    //如果同步后,相应的PTE还不存在,则说明该地址有问题了
    pte_k = pte_offset_kernel(pmd_k, address);
    if (!pte_present(*pte_k))
        return -1;
 
    return 0;
}

常见问题解答

问题一:页表到底是保存在内核空间中还是用户空间中?

创建和删除页表的确是在内核空间操作的。页表不能在用户空间进行操作一点都不奇怪,你要知道页表的作用不仅仅是虚拟地址到物理地址的映射,还有关键的权限访问控制和页面属性的记录。下图是armv8中level 1的页表格式,类似于x86中的PUD的结构:
在这里插入图片描述
可以看到该页表中只有"Outlook block address"是在表示下一级页表的地址,"Upper attributes"和"Lower attributes"是内核空间用到权限的控制位和页属性标志。

问题2:页表访问,软件是不是会频繁陷入内核?

这个需要结合场景分析。访问页表是否会陷入内核,这要看你是:

  1. CPU地址翻译的过程中的页表访问;
  2. 增加修改页表项。

如果是第一种,CPU地址翻译,那么这种访问是硬件完成的,整个过程不需要代码参与,没有任何性能上的损失。

如果是第二种,是会慢一些。这种慢是为了安全,如果页表在用户空间,那么用户就可能自己修改页表,映射任意的内存地址,访问任何内存,甚至是直接操作硬件,进程间、内核的隔离保护就失去了意义。

问题3:内存申请,软件是不是会频繁陷入内核创建新页表条目

你以为在用户进程中分配内存的时候,就马上通过系统调用陷入内核,然后进行页表操作吗?这个理解是不对的。

应用程序虽然可能频繁的malloc或者free,但在页表层面上,并不会频繁的创建、删除页表项,主要原因是,malloc/free操作的接口都是C库的接口,在C库里,还有另外一层次的封装,来保证不会频繁的提交页表的操作申请。

内核如今已经发展的很成熟了,当然不会这么傻。在你兴高采烈的分配好一块内存后,内核只是给你找了一块独一无二的虚拟内存空间,并没有映射到物理内存,所以根本没有页表的操作。只有你真正用到你的内存时,MMU发现无法进行虚拟内存到物理内存的转换,只好抛出page fault异常,然后进入内核进行物理内存的分配过程,接着就给你把页表创建好了,这个整个过程叫做惰性分配

更重要的是,其实libc库在进程创建的时候,就已经把堆空间用内存池的方式管理起来,在进程分配小于128kb的内存时,根本不需要内核进行任何操作,因为堆这个段的虚拟内存早就映射好了物理内存

问题4:那内核页表和普通的页表到底有什么区别?

对于所有进程来说它们页表中的内核空间页表部分都是一模一样的,它们都是从1号进程的init_mm结构中copy的,只有用户空间的页表不尽相同。用户空间的页表是用来进行不同进程地址空间隔离的,所以相同的虚拟地址可以映射到不同的物理地址,当然一般情况下这也是必须的,而内核只有一个。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/389976.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LaTeX表格自定义行高+自定义列宽+大表格自适应页面宽度

一、自定义行高 默认行高效果 自定义行高效果&#xff1a;看起来更美观、大方些 实现方式&#xff1a;在LaTeX表格中的\begin{table}和\begin{tabular}之间插入命令\renewcommand\arraystretch{1.5}&#xff0c;其中1.5这个数值是可以自定义的&#xff0c;数值越大&#xff0c;…

xmu 离散数学 卢杨班作业详解【8-12章】

文章目录第八章 树23456810第九章46811第十章24567第十一章14571116第十二章131317第八章 树 2 (2) 设有k片树叶 2∗m2∗43∗3k2*m2*43*3k2∗m2∗43∗3k n23kn23kn23k mn−1mn-1mn−1 联立解得k9 T中有9片树叶 3 有三颗非同构的生成树 4 (1) c --abc e–abed f–dgf…

2023.03.05 学习周报

文章目录摘要文献阅读1.题目2.摘要3.介绍4.SAMPLING THE OUTPUT5.LOSS FUNCTION DESIGN5.1 ranking loss: Top1 & BPR5.2 VANISHING GRADIENTS5.3 ranking-max loss fuction5.4 BPR-max with score regularization6.实验7.结论深度学习1.相关性1.1 什么是相关性1.2 协方差1…

套接字实现TCP

套接字 套接字的意义就是客户端与服务器进行双向通信的端点&#xff0c;如果有不理解点上面套接字三字更近距离了解套接字。 网络套接字与客户连接的特定网络有关的服务端口号&#xff0c;这个端口号允许linux进入特定的端口号的连接转到正确的服务器进程。 套接字通信的建立过…

【数据结构与算法】数据结构有哪些?算法有哪些?

1. 算法与数据结构总览图 2.常用的数据结构 2.1.数组&#xff08;Array&#xff09; 数组是一种聚合数据类型&#xff0c;它是将具有相同类型的若干变量有序地组织在一起的集合。数组可以说是最基本的数据结构&#xff0c;在各种编程语言中都有对应。一个数组可以分解为多个数…

k8s篇之Pod 干预与 PDB

文章目录自愿干预和非自愿干预PDBPDB 示例分离集群所有者和应用程序所有者角色如何在集群上执行中断操作自愿干预和非自愿干预 Pod 不会消失&#xff0c;除非有人&#xff08;用户或控制器&#xff09;将其销毁&#xff0c;或者出现了不可避免的硬件或软件系统错误。 我们把这…

Vue+ECharts实现可视化大屏

由于项目需要一个数据大屏页面&#xff0c;所以今天学习了vue结合echarts的图标绘制 首先需要安装ECharts npm install echarts --save因为只是在数据大屏页面绘制图表&#xff0c;所以我们无需把它设置为全局变量。 可以直接在该页面引入echarts&#xff0c;就可以在数据大…

『MyBatis技术内幕』源码调试前提

准备源代码包 下载源代码 3.4.6 版本 https://github.com/mybatis/mybatis-3/releases?page2 通过 idea 导入然后回自动下载所有依赖&#xff0c;根据 3.4.6 版本的 pom.xml 找到依赖的 mybatis-parent 版本 <parent><groupId>org.mybatis</groupId><ar…

《计算机网络:自顶向下方法》学习笔记——第一章:计算机网络和因特网

计网 第一章 计算机网络和因特网 1.1 什么是因特网 回答这个问题有两种方式 其一&#xff0c;我们能够描述因特网的具体构成&#xff0c;即构成因特网的基本硬件和软件组件&#xff1b;其二&#xff0c;我们能够根据为分布式应用提供服务的联网基础设施来描述因特网。 1.1.…

加油站ai视觉识别系统 yolov7

加油站ai视觉识别系统通过yolov7网络模型深度学习&#xff0c;加油站ai视觉识别算法对现场画面中人员打电话抽烟等违规行为&#xff0c;还有现场出现明火烟雾等危险状态。除此之外&#xff0c;模型算法还可以对卸油时灭火器未正确摆放、人员离岗不在现场、卸油过程静电释放时间…

20230304学习笔记

1、Mybatis #{}和${}的区别是什么 a、#{}是预编辑处理、是占位符&#xff0c;${}是字符串拼接符。 b、#{}替换为&#xff1f;号&#xff0c;用PreparedStatement来赋值&#xff0c;${}直接替换变量的值&#xff0c;用Statement赋值。 c、#{}在DBMS中、自动加入单引号&#…

XSS-labs靶场1-13关解法答案

目录 XSS-labs克隆/下载地址: 第一关 解法 第二关 解法 第三关 解法 第四关 解法 第五关 解法 第六关 解法 第七关 解法 第八关 解法 第九关 解法 第十关 解法 第十一关 解法 第十二关 解法 第十三关 解法 从XSS payload 中关于浏览器解码的一些总结 XSS-labs克隆/下载地…

javaDoc生成方式

javaDoc生成方式 命令行生成 在cmd控制台窗口上找到需要生成文件的路径&#xff0c;然后执行命令。 # javadoc -encoding UTF-8 -charset UTF-8 文件名 javadoc -encoding UTF-8 -charset UTF-8 Doc.java这样就生成完成了。 测试Doc.java文件 package com.jiang.base;/***…

grid了解

结构 <div class"grid"><div>1</div><div>2</div><div>3</div><div>4</div><div>5</div><div>6</div><div>7</div><div>8</div><div>9</div>&l…

css中重难点整理

一、vertical-align 在学习vertical-align的时候&#xff0c;可能会很困惑。即使网上有一大推文章讲veitical-align,感觉看完好像懂了&#xff0c;等自己布局的时候用到vertical-align的时候好像对它又很陌生。这就是我在布局的时候遇到的问题。 本来vertical-align就很不好理…

LeetCode分类刷题-----贪心算法

贪心算法贪心455.分发饼干376.摆动序列53.最大子序和122.买卖股票的最佳时机||55.跳跃游戏45.跳跃游戏||1005.K次取反后最大化的数组和134.加油站135.分发糖果860.柠檬水找零406.根据身高重建队列452.用最少数量的箭引爆气球![在这里插入图片描述](https://img-blog.csdnimg.cn…

[算法和数据结构]--回溯算法之DFS初识

回溯算法——DFSDFS介绍(Depth First Search)DFS经典题目1. 员工的重要性2. 图像渲染3.被围绕的区域4.岛屿数量5. 电话号码的字母组合6.数字组合7. 活字印刷8. N皇后DFS介绍(Depth First Search) 回溯法&#xff08;back tracking&#xff09;&#xff08;探索与回溯法&#x…

嵌入式和Python(二):python初识及其基本使用规则

目录 一&#xff0c;python基本特点 二&#xff0c;python使用说明 ● 两种编程方式 ① 交互式编程 ② 脚本式编程 ● python中文编码 ● python行和缩进 ● python引号 ● python空行 ● python等待用户输入 ① 没有转换变量类型 ② 转换变量类型 ● python变…

[Pytorch]DataSet和DataLoader逐句详解

将自己的数据集引入Pytorch是搭建属于自己的神经网络的重要一步&#xff0c;这里我设计了一个简单的实验&#xff0c;结合这个实验代码&#xff0c;我将逐句教会大家如何将数据引入DataLoader。 这里以目标检测为例&#xff0c;一个batch中包含图片文件、先验框的框体坐标、目标…

【C语言进阶:指针的进阶】你真分得清sizeof和strlen?

本章重点内容&#xff1a; 字符指针指针数组数组指针数组传参和指针传参函数指针函数指针数组指向函数指针数组的指针回调函数指针和数组面试题的解析这篇博客 FLASH 将带大家一起来练习一些容易让人凌乱的题目&#xff0c;通过这些题目来进一步加深和巩固对数组&#xff0c;指…