20 客户端服务订阅的事件机制剖析

news2025/1/18 11:48:44

Nacos客户端服务订阅的事件机制剖析

我们已经分析了Nacos客户端订阅的核心流程:Nacos客户端通过一个定时任务,每6秒从注册中心获取实例列表,当发现实例发生变化时,发布变更事件,订阅者进行业务处理,然后更新内存中和本地的缓存中的实例。

我们来分析,定时任务获取到最新实例列表之后,整个事件机制是如何处理的,首先我们先回顾整体流程
在这里插入图片描述
在第一步调用subscribe方法时,会订阅一个EventListener事件。而在定时任务UpdateTask定时获取实例列表之后,会调用ServiceInfoHolder.processServiceInfo方法对ServiceInfo进行本地处理,这其中就包括和事件处理。

监听事件的注册

在subscribe方法中,通过了下面的源码进行了监听事件的注册:

@Override
public void subscribe(String serviceName, String groupName, List<String> clusters, EventListener listener)
    throws NacosException {
    if (null == listener) {
        return;
    }
    String clusterString = StringUtils.join(clusters, ",");
    changeNotifier.registerListener(groupName, serviceName, clusterString, listener);
    clientProxy.subscribe(serviceName, groupName, clusterString);
}

在这其中我们主要要关注的就是changeNotifier.registerListener,此监听就是进行具体事件注册逻辑的,我们来看一下源码:

可以看出,事件的注册便是将EventListener存储在InstancesChangeNotifier的listenerMap属性当中了。同时这里的数据结构为ConcurrentHashMap,key为服务实例的信息的拼接,value为监听事件的集合。

public void registerListener(String groupName, String serviceName, String clusters, EventListener listener) {
    String key = ServiceInfo.getKey(NamingUtils.getGroupedName(serviceName, groupName), clusters);
    ConcurrentHashSet<EventListener> eventListeners = listenerMap.get(key);
    if (eventListeners == null) {
        synchronized (lock) {
            eventListeners = listenerMap.get(key);
            if (eventListeners == null) {
                eventListeners = new ConcurrentHashSet<EventListener>();
                //将EventListener缓存到listenerMap
                listenerMap.put(key, eventListeners);
            }
        }
    }
    eventListeners.add(listener);
}

ServiceInfo处理

上面的源码中已经完成了事件的注册,现在就来追溯触发事件的来源,UpdateTask中获取到最新的实例会进行本地化处理,部分源码如下:

// ServiceInfoUpdateService>UpdateTask>run()
ServiceInfo serviceObj = serviceInfoHolder.getServiceInfoMap().get(serviceKey);
if (serviceObj == null) {
    serviceObj = namingClientProxy.queryInstancesOfService(serviceName, groupName, clusters, 0, false);
    // 本地缓存处理
    serviceInfoHolder.processServiceInfo(serviceObj);
    lastRefTime = serviceObj.getLastRefTime();
    return;
}

这个run方法的详细逻辑昨天已经给大家分析过了,今天我们主要来看其中本地缓存处理的方法serviceInfoHolder.processServiceInfo,我们先来分析流程:

这个逻辑简单来说:判断新的ServiceInfo数据是否正确,是否发生了变化。如果数据格式正确,且发生变化,那就发布一个InstancesChangeEvent事件,同时将ServiceInfo写入本地缓存。

public ServiceInfo processServiceInfo(ServiceInfo serviceInfo) {
    String serviceKey = serviceInfo.getKey();
    if (serviceKey == null) {
        return null;
    }
    ServiceInfo oldService = serviceInfoMap.get(serviceInfo.getKey());
    if (isEmptyOrErrorPush(serviceInfo)) {
        //empty or error push, just ignore
        return oldService;
    }
    // 缓存服务信息
    serviceInfoMap.put(serviceInfo.getKey(), serviceInfo);
    // 判断注册的实例信息是否已变更
    boolean changed = isChangedServiceInfo(oldService, serviceInfo);
    if (StringUtils.isBlank(serviceInfo.getJsonFromServer())) {
        serviceInfo.setJsonFromServer(JacksonUtils.toJson(serviceInfo));
    }
    // 监控服务监控缓存Map的大小
    MetricsMonitor.getServiceInfoMapSizeMonitor().set(serviceInfoMap.size());
    // 服务实例以更变
    if (changed) {
        NAMING_LOGGER.info("current ips:({}) service: {} -> {}", serviceInfo.ipCount(), serviceInfo.getKey(),
                           JacksonUtils.toJson(serviceInfo.getHosts()));
        // 添加实例变更事件,会被订阅者执行
        NotifyCenter.publishEvent(new InstancesChangeEvent(serviceInfo.getName(), serviceInfo.getGroupName(),
                                                           serviceInfo.getClusters(), serviceInfo.getHosts()));
        // 记录Service本地文件
        DiskCache.write(serviceInfo, cacheDir);
    }
    return serviceInfo;
}

分析到这里我们发现其实这个重点应该在服务信息变更之后,发布的InstancesChangeEvent事件,这个事件是NotifyCenter进行发布的,我们来追踪一下源码

事件追踪

NotifyCenter通知中心的核心流程如下:
在这里插入图片描述
NotifyCenter中进行事件发布,发布的核心逻辑是:

1. 根据InstancesChangeEvent事件类型,获得对应的CanonicalName
 	2.CanonicalName作为key,从NotifyCenter.publisherMap中获取对应的事件发布者(EventPublisher)
 	3. EventPublisherInstancesChangeEvent事件进行发布

核心代码如下:

private static boolean publishEvent(final Class<? extends Event> eventType, final Event event) {
    if (ClassUtils.isAssignableFrom(SlowEvent.class, eventType)) {
        return INSTANCE.sharePublisher.publish(event);
    }
	
    // 根据InstancesChangeEvent事件类型,获得对应的CanonicalName
    final String topic = ClassUtils.getCanonicalName(eventType);

    // 将CanonicalName作为Key,从NotifyCenter#publisherMap中获取对应的事件发布者(EventPublisher)
    EventPublisher publisher = INSTANCE.publisherMap.get(topic);
    if (publisher != null) {
        // 事件发布者publisher发布事件(InstancesChangeEvent)
        return publisher.publish(event);
    }
    LOGGER.warn("There are no [{}] publishers for this event, please register", topic);
    return false;
}

在这个源码中,其实INSTANCE为NotifyCenter的单例实现,那么这里的publisherMap中key(CanonicalName)和value(EventPublisher)之间的关系是什么时候建立的?

其实是在NacosNamingService实例化时调用init初始化方法中进行绑定的:

// Publisher的注册过程在于建立InstancesChangeEvent.class与EventPublisher的关系。
NotifyCenter.registerToPublisher(InstancesChangeEvent.class, 16384);

这里再继续跟踪registerToPublisher方法就会发现默认采用了DEFAULT_PUBLISHER_FACTORY(默认发布者工厂)来进行构建,我们再继续跟踪会发现,在NotifyCenter中静态代码块,会发现DEFAULT_PUBLISHER_FACTORY默认构建的EventPublisher为DefaultPublisher。

//NotifyCenter
public static EventPublisher registerToPublisher(final Class<? extends Event> eventType, final int queueMaxSize) {
    return registerToPublisher(eventType, DEFAULT_PUBLISHER_FACTORY, queueMaxSize);
//NotifyCenter>static中部分代码
DEFAULT_PUBLISHER_FACTORY = (cls, buffer) -> {
    try {
        EventPublisher publisher = clazz.newInstance();
        publisher.init(cls, buffer);
        return publisher;
    } catch (Throwable ex) {
        LOGGER.error("Service class newInstance has error : ", ex);
        throw new NacosRuntimeException(SERVER_ERROR, ex);
    }
};

所以我们得出结论NotifyCenter中它维护了事件名称和事件发布者的关系,而默认的事件发布者为DefaultPublisher。

DefaultPublisher的事件发布

我们现在来看一下默认事件发布者的源码,查看以后我们会发现它继承自Thread,也就是说它是一个线程类,同时,它又实现了EventPublisher,也就是发布者

public class DefaultPublisher extends Thread implements EventPublisher

接下来我们来看它的init初始化方法,从这里我们可以看出当DefaultPublisher被初始化时,是以守护线程的方式运作的,其中还初始化了一个阻塞队列。

@Override
public void init(Class<? extends Event> type, int bufferSize) {
    // 守护线程
    setDaemon(true);
    // 设置线程名字
    setName("nacos.publisher-" + type.getName());
    this.eventType = type;
    this.queueMaxSize = bufferSize;
    // 阻塞队列初始化
    this.queue = new ArrayBlockingQueue<>(bufferSize);
    start();
}

最后调用了start()方法:在这其中调用了super.start()启动线程

@Override
public synchronized void start() {
    if (!initialized) {
        // start just called once
        super.start();
        if (queueMaxSize == -1) {
            queueMaxSize = ringBufferSize;
        }
        initialized = true;
    }
}

run()方法调用openEventHandler()方法
这里写了两个死循环,第一个死循环可以理解为延时效果,也就是说线程启动时最大延时60秒,在这60秒中每隔1秒判断一下当前线程是否关闭,是否有订阅者,是否超过60秒。如果满足一个条件,就可以提前跳出死循环。

​ 而第二个死循环才是真正的业务逻辑处理,会从阻塞队列中取出一个事件,然后通过receiveEvent方法进行执行。

@Override
public void run() {
    openEventHandler();
}

void openEventHandler() {
    try {

        // This variable is defined to resolve the problem which message overstock in the queue.
        int waitTimes = 60;
        // To ensure that messages are not lost, enable EventHandler when
        // waiting for the first Subscriber to register
        
        // 死循环延迟,线程启动最大延时60秒,这个主要是为了解决消息积压的问题。
        for (; ; ) {
            if (shutdown || hasSubscriber() || waitTimes <= 0) {
                break;
            }
            ThreadUtils.sleep(1000L);
            waitTimes--;
        }
		
        // 死循环不断的从队列中取出Event,并通知订阅者Subscriber执行Event
        for (; ; ) {
            if (shutdown) {
                break;
            }
            // 从队列中取出Event
            final Event event = queue.take();
            receiveEvent(event);
            UPDATER.compareAndSet(this, lastEventSequence, Math.max(lastEventSequence, event.sequence()));
        }
    } catch (Throwable ex) {
        LOGGER.error("Event listener exception : ", ex);
    }
}

队列中的事件哪里来的?其实就是DefaultPublisher的发布事件方法被调用了publish往阻塞队列中存入事件,如果存入失败,会直接调用receiveEvent。

​ 可以理解为,如果向队列中存入失败,则立即执行,不走队列了。

@Override
public boolean publish(Event event) {
    checkIsStart();
    // 向队列中插入事件元素
    boolean success = this.queue.offer(event);
    // 判断是否成功插入
    if (!success) {
        LOGGER.warn("Unable to plug in due to interruption, synchronize sending time, event : {}", event);
        // 失败直接执行
        receiveEvent(event);
        return true;
    }
    return true;
}

最后再来看receiveEvent方法的实现:这里其实就是遍历DefaultPublisher的subscribers(订阅者集合),然后执行通知订阅者的方法。

void receiveEvent(Event event) {
    final long currentEventSequence = event.sequence();

    if (!hasSubscriber()) {
        LOGGER.warn("[NotifyCenter] the {} is lost, because there is no subscriber.", event);
        return;
    }

    // Notification single event listener
    // 通知订阅者执行Event
    for (Subscriber subscriber : subscribers) {
        // Whether to ignore expiration events
        if (subscriber.ignoreExpireEvent() && lastEventSequence > currentEventSequence) {
            LOGGER.debug("[NotifyCenter] the {} is unacceptable to this subscriber, because had expire",
                         event.getClass());
            continue;
        }

        // Because unifying smartSubscriber and subscriber, so here need to think of compatibility.
        // Remove original judge part of codes.
        notifySubscriber(subscriber, event);
    }
}

但是这里还有一个疑问,就是subscribers中订阅者哪里来的,这个还要回到NacosNamingService的init方法中:

// 将Subscribe注册到Publisher
NotifyCenter.registerSubscriber(changeNotifier);

registerSubscriber方法最终会调用NotifyCenter的addSubscriber方法:核心逻辑就是将订阅事件、发布者、订阅者三者进行绑定。而发布者与事件通过Map进行维护、发布者与订阅者通过关联关系进行维护。

private static void addSubscriber(final Subscriber consumer, Class<? extends Event> subscribeType,
                                  EventPublisherFactory factory) {

    final String topic = ClassUtils.getCanonicalName(subscribeType);
    synchronized (NotifyCenter.class) {
        // MapUtils.computeIfAbsent is a unsafe method.
        MapUtil.computeIfAbsent(INSTANCE.publisherMap, topic, factory, subscribeType, ringBufferSize);
    }
    // 获取事件对应的Publisher
    EventPublisher publisher = INSTANCE.publisherMap.get(topic);
    if (publisher instanceof ShardedEventPublisher) {
        ((ShardedEventPublisher) publisher).addSubscriber(consumer, subscribeType);
    } else {
        // 添加到subscribers集合
        publisher.addSubscriber(consumer);
    }
}

关系都已经梳理明确了,事件也有了,最后我们看一下DefaulePublisher中的notifySubscriber方法,这里就是真正的订阅者执行事件了。

@Override
public void notifySubscriber(final Subscriber subscriber, final Event event) {

    LOGGER.debug("[NotifyCenter] the {} will received by {}", event, subscriber);
	//执行订阅者事件
    final Runnable job = () -> subscriber.onEvent(event);
    // 执行者
    final Executor executor = subscriber.executor();

    if (executor != null) {
        executor.execute(job);
    } else {
        try {
            job.run();
        } catch (Throwable e) {
            LOGGER.error("Event callback exception: ", e);
        }
    }
}

总结

整体服务订阅的事件机制还是比较复杂的,因为用到了事件的形式,逻辑比较绕,并且其中还有守护线程,死循环,阻塞队列等。

​ 需要重点理解NotifyCenter对事件发布者、事件订阅者和事件之间关系的维护,而这一关系的维护的入口就位于NacosNamingService的init方法当中。

核心流程梳理

ServiceInfoHolder中通过NotifyCenter发布了InstancesChangeEvent事件

NotifyCenter中进行事件发布,发布的核心逻辑是:

  • 根据InstancesChangeEvent事件类型,获得对应的CanonicalName
  • 将CanonicalName作为Key,从NotifyCenter.publisherMap中获取对应的事件发布者(EventPublisher)
  • EventPublisher将InstancesChangeEvent事件进行发布

InstancesChangeEvent事件发布:

  • 通过EventPublisher的实现类DefaultPublisher进行InstancesChangeEvent事件发布
  • DefaultPublisher本身以守护线程的方式运作,在执行业务逻辑前,先判断该线程是否启动
  • 如果启动,则将事件添加到BlockingQueue中,队列默认大小为16384
  • 添加到BlockingQueue成功,则整个发布过程完成
  • 如果添加失败,则直接调用DefaultPublisher.receiveEvent方法,接收事件并通知订阅者
  • 通知订阅者时创建一个Runnable对象,执行订阅者的Event
  • Event事件便是执行订阅时传入的事件

如果添加到BlockingQueue成功,则走另外一个业务逻辑:

  • DefaultPublisher初始化时会创建一个阻塞(BlockingQueue)队列,并标记线程启动
  • DefaultPublisher本身是一个Thread,当执行super.start方法时,会调用它的run方法
  • run方法的核心业务逻辑是通过openEventHandler方法处理的
  • openEventHandler方法通过两个for循环,从阻塞队列中获取时间信息
  • 第一个for循环用于让线程启动时在60s内检查执行条件
  • 第二个for循环为死循环,从阻塞队列中获取Event,并调用DefaultPublisher#receiveEvent方法,接收事件并通知订阅者
  • Event事件便是执行订阅时传入的事件
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/387083.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

超长文解析Linux块设备驱动编写方法

1.前提知识 一个块驱动提供对块存储设备&#xff08;比如 SD 卡、EMMC、NAND Flash、Nor Flash、SPI Flash、机械硬盘、固态硬盘等&#xff09;以固定大小&#xff08;块的大小由内核决定&#xff0c;常常是 4096 字节 &#xff09;的块为基本单位&#xff0c;进行随机的存取。…

【项目实战】使用Feign服务间相互调用,其实OpenFeign也没有想象中那么难嘛

一、Feign介绍 openfeign是一个java的http客户端,用来简化http调用 二、Feign架构(来自官方) Feign由五大部分组成, 由于刚开始接触 feign ,比较关注的 clients 跟 encoders/decoders 三、OKHTTP与Feign之间的关系 在Feign中,Client是一个非常重要的组件,Feign最终…

Altium Designer19 #学习笔记# | 基础应用技巧汇总

全文目录一.元件符号库二.元件封装库1.AD09 集成元件库/封装库三.电路原理图1. 巧用查找"相似对象功能"1.1 查找相同元件1.2. 查找相同文本1.3. 查找相同网络 &#xff1a;E - S - C四.PCB原理图【AD PCB模式下的常用快捷键】PCB视图放大/缩小PCB视图左/右移动PCB切换…

《第一行代码》 第十章:服务

一&#xff0c;在子线程中更新UI 1&#xff0c;新建项目&#xff0c;修改布局代码 <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"&g…

Bluetooth

GATT简介 蓝牙分为经典蓝牙和低功耗蓝牙&#xff08;BLE&#xff09;&#xff0c;我们常用的蓝牙遥控器就是低功耗蓝牙 低功耗蓝牙&#xff08;BLE&#xff09;连接都是建立在 GATT (Generic Attribute Profile) 协议之上。 GATT全称Generic Attribute Profile&#xff08;直译…

软件测试用例篇(2)

功能测试界面测试兼容性测试安全测试易用性测试性能测试 针对有需求的案例来设计测试用例:邮箱注册&#xff0c;部分测试用例 https://zay1xofb7z6.feishu.cn/mindnotes/bmncnKD5Ak6GSZl3PRlWDgF9z3g#mindmap 一)等价类: 场景需求:姓名长度是6-200位&#xff0c;那么如何进行设…

【数据结构初阶】手撕单链表

目录一.链表概念和结构二.单链表功能的实现1.打印单链表内容2.申请单链表节点3.头插和尾插4.头删和尾删5.单链表查找6.pos位置前后插入7.pos位置删除三.链表面试题剖析一.链表概念和结构 概念&#xff1a;链表是一种物理存储结构上非连续、非顺序的存储结构&#xff0c;数据元素…

5-12 SpringCloud快速开发入门:服务消费者构建Hystrix Dashboard监控端点

服务消费者构建Hystrix Dashboard监控端点 Hystrix 仪表盘工程已经创建好了&#xff0c;现在我们需要有一个服务&#xff0c;让这个服务提供一个路径为/actuator/hystrix.stream 接口&#xff0c;然后就可以使用 Hystrix 仪表盘来对该服务进行监控了&#xff1b; 我们改造消费者…

pandas常用操作

文章目录1 认识Pandas2 pandas常用数据结构2.1 Series2.1.1 Series创建2.1.2 数据类型转换2.1.3 查看Series对象的属性2.1.4 预览数据head、tail2.1.5 通过索引获取数据2.2 DataFrame2.2.1 创建DataFrame对象2.2.2 获取行、列、值2.2.3 数据预览2.2.4 通过索引获取数据2.2.5 增…

【Redis】Redis高级客户端Lettuce详解

文章目录前提Lettuce简介连接Redis定制的连接URI语法基本使用API同步API异步API反应式API发布和订阅事务和批量命令执行Lua脚本执行高可用和分片普通主从模式哨兵模式集群模式动态命令和自定义命令高阶特性配置客户端资源使用连接池几个常见的渐进式删除例子在SpringBoot中使用…

C/C++每日一练(20230304)

目录 1. 计数质数 ☆ 2. 筛选10到1000的回文数 ☆ 3. 计算位于矩阵边缘的元素之和 ★ 1. 计数质数 统计所有小于非负整数 n 的质数的数量。 示例 1&#xff1a; 输入&#xff1a;n 10 输出&#xff1a;4 解释&#xff1a;小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7…

【HomeKit】从HomeKit架构层细化到HomeKit ADK集成

前言&#xff1a;这篇文章是对于苹果协议文件《HomeKit ADK Integration Guide - Addendum for Televisions》的学习&#xff0c;针对版本为ADK 6.0电视。描述了将HomeKit ADK的电视简介集成到目标平台中所需的步骤。 总说明 此配置文件用于控制启用Airplay的电视&#xff0c;…

高通Android 13默认切换免提功能

1、测试部反馈 由于平板本身没有听筒功能 因此考虑工厂直接切换到免提功能 2、修改路径 frameworks/av/services/audiopolicy/enginedefault/src/Engine.cpp 3、编译源码ok 拨打紧急号码 可以正常切换到免提功能 其他mtk平台可能不一样 具体以项目实际为准 相关链接 构建…

ESP32编译及运行错误记录

1、打印格式不对 一般都是因为日志中某个参数打印格式不匹配造成。 ESP_LOGI(TAG, "[APP] Free memory: %lu bytes", esp_get_free_heap_size());//将之前的%d 改为%lu 2、配置载不对 这里选择了蓝牙模块需要引入蓝牙组件才能编译通过 idf.py menuconfig Component…

项目中的MD5、盐值加密

首先介绍一下MD5&#xff0c;而项目中用的是MD5和盐值来确保密码的安全性&#xff1b; 1. md5简介 md5的全称是md5信息摘要算法&#xff08;英文&#xff1a;MD5 Message-Digest Algorithm &#xff09;&#xff0c;一种被广泛使用的密码散列函数&#xff0c;可以产生一个128位…

css-盒模型

巧妙运用margin负值盒模型和怪异盒模型(border padding 包含在内)display: block 能让textarea input 水平尺寸自适应父容器? – 不能 * {box-sizing: border-box; // bs: bb }<textarea/> 是替换元素,尺寸由内部元素决定,不受display水平影响. 当然可以直接设置宽度10…

React(三):脚手架、组件化、生命周期、父子组件通信、插槽、Context

React&#xff08;三&#xff09;一、脚手架安装和创建1.安装脚手架2.创建脚手架3.看看脚手架目录4.运行脚手架二、脚手架下从0开始写代码三、组件化1.类组件2.函数组件四、React的生命周期1.认识生命周期2.图解生命周期&#xff08;1&#xff09;Constructor&#xff08;2&…

Allegro如何导入第一方网表操作指导

Allegro如何导入第一方网表操作指导 在启动PCB设计之前,网表的导入是首要的流程,第一方网表内容如下图 如何将第一方网表导入到PCB中,具体操作如下 点击File点击Import

【项目】用户管理系统

一、需求分析完成一个简单的用户信息管理系统&#xff0c;超级管理员可以登录本系统&#xff0c;查询用户信息、实现用户的管理功能。1.1功能&#xff1a;主要操作和管理的对象&#xff1a;用户。用户分为两类&#xff1a;超级管理员/普通用户。登录功能&#xff08;只针对超管…

深入理解多进程

多进程 一、进程状态 二、创建子进程 - fork 1、函数接口 #include <unistd.h>pid_t fork(void);2、基本概述 成功后&#xff0c;子进程的 PID 在父进程中返回&#xff0c;在子进程中返回 0。 失败时&#xff0c;在父进程中返回 -1&#xff0c;不创建子进程&#xff0c…