文章目录
- 一:数组理论基础
- 二:数组知识点总结
- 三:数组这种数据结构的优点和缺点是什么?
- 四:实战解题
- 1. 移除元素
- 暴力解法
- 双指针法
- 2.有序数组的平方
- 暴力解法
- 双指针法
- 最后说一句
一:数组理论基础
首先要知道数组在内存中的存储方式,这样才能真正理解数组相关的题
数组是存放在连续内存空间上的相同类型数据的集合。
数组可以方便的通过下标索引的方式获取到下标下对应的数据。
举一个字符数组的例子,如图所示:
需要两点注意的是
- 数组下标都是从0开始的。
- 数组内存空间的地址是连续的
正是因为数组的在内存空间的地址是连续的,所以我们在删除或者增添元素的时候,就难免要移动其他元素的地址。
例如删除下标为3的元素,需要对下标为3的元素后面的所有元素都要做移动操作,如图所示:
二:数组知识点总结
1、数组当中可以存储“基本数据类型”的数据,也可以存储“引用数据类型”的数据。
2、数组因为是引用类型,所以数组对象存储在 堆内存 当中。(数组是存储在堆当中的)
3、数组当中如果存储的是“java对象”的话,实际上存储的是对象的“引用(内存地址)”,数组中不能直接存储java对象。
4、所有的数组对象都有 length 属性(java自带的),用来获取数组中元素的个数。
5、java中的数组要求数组中元素的 类型统一。
比如:int类型数组只能存储int类型,Person类型数组只能存储Person类型。
6、数组在内存方面存储的时候,数组中的元素内存地址(存储的每一个元素都是有规则的挨着排列的)是连续的。内存地址连续。(数组特点)
7、所有的数组都是拿“第一个小方框的内存地址”作为整个数组对象的内存地址。
(数组中首元素的内存地址作为整个数组对象的内存地址。)
8、数组中每一个元素都是有下标的,下标从0开始,以1递增。最后一个元素的下标是:length - 1
三:数组这种数据结构的优点和缺点是什么?
优点:查询/查找/检索某个下标上的元素时效率极高。
原因:
第一:每一个元素的内存地址在空间存储上是连续的。
第二:每一个元素类型相同,所以占用空间大小一样。
第三:知道第一个元素内存地址,知道每一个元素占用空间的大小,又知道下标,所以通过一个数学表达式就可以计算出某个下标上元素的内存地址。直接通过内存地址定位元素,所以数组的检索效率是最高的。
注意:
缺点:
第一:由于为了保证数组中每个元素的内存地址连续,所以在数组上随机删除或者增加元素的时候,效率较低,因为随机增删元素会涉及到后面元素统一向前或者向后位移的操作。
第二:数组不能存储大数据量。
因为很难在内存空间上找到一块特别大的连续的内存空间。
注意:
对于数组中最后一个元素的增删,是没有效率影响的。
四:实战解题
1. 移除元素
力扣链接
给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组。
元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
示例 1:
输入:nums = [3,2,2,3], val = 3
输出:2, nums = [2,2]
解释:函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。你不需要考虑数组中超出新长度后面的元素。例如,函数返回的新长度为 2 ,而 nums = [2,2,3,3] 或 nums = [2,2,0,0],也会被视作正确答案。
暴力解法
这个题目暴力的解法就是两层for循环,一个for循环遍历数组元素 ,第二个for循环更新数组。
很明显暴力解法的时间复杂度是O(n^2),这道题目暴力解法在leetcode上是可以过的。
代码如下:
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int size = nums.size();
for (int i = 0; i < size; i++) {
if (nums[i] == val) { // 发现需要移除的元素,就将数组集体向前移动一位
for (int j = i + 1; j < size; j++) {
nums[j - 1] = nums[j];
}
i--; // 因为下标i以后的数值都向前移动了一位,所以i也向前移动一位
size--; // 此时数组的大小-1
}
}
return size;
}
};
- 时间复杂度:O(n^2)
- 空间复杂度:O(1)
双指针法
思路及算法
由于题目要求删除数组中等于val的元素,因此输出数组的长度一定小于等于输入数组的长度,我们可以把输出的数组直接写在输入数组上。可以使用双指针:右指针right指向当前将要处理的元素,左指针left指向下一个将要赋值的位置。
·如果右指针指向的元素不等于val,它一定是输出数组的一个元素,我们就将右指针指向的元素复制到左指针位置,然后将左右指针同时右移;
·如果右指针指向的元素等于val,它不能在输出数组里,此时左指针不动,右指针右移一位。
整个过程保持不变的性质是:区间[0, left)中的元素都不等于value。当左右指针遍历完输入数组以后,left的值就是输出数组的长度。
这样的算法在最坏情况下(输入数组中没有元素等于value),左右指针各遍历了数组一次。
class Solution {
public int removeElement(int[] nums, int val) {
// 快慢指针
int slowIndex = 0;
for (int fastIndex = 0; fastIndex < nums.length; fastIndex++) {
if (nums[fastIndex] != val) {
nums[slowIndex] = nums[fastIndex];
slowIndex++;
}
}
return slowIndex;
}
}
2.有序数组的平方
力扣链接
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例 1:
输入:nums = [-4,-1,0,3,10] 输出:[0,1,9,16,100] 解释:平方后,数组变为 [16,1,0,9,100],排序后,数组变为 [0,1,9,16,100]
示例 2:
输入:nums = [-7,-3,2,3,11] 输出:[4,9,9,49,121]
暴力解法
最直观的想法,莫过于:每个数平方之后,排个序,美滋滋,代码如下:
class Solution {
public:
vector<int> sortedSquares(vector<int>& A) {
for (int i = 0; i < A.size(); i++) {
A[i] *= A[i];
}
sort(A.begin(), A.end()); // 快速排序
return A;
}
};
这个时间复杂度是 O(n + nlogn), 可以说是O(nlogn)的时间复杂度,但为了和下面双指针法算法时间复杂度有鲜明对比,我记为 O(n + nlog n)。
双指针法
数组其实是有序的, 只不过负数平方之后可能成为最大数了。
那么数组平方的最大值就在数组的两端,不是最左边就是最右边,不可能是中间。
此时可以考虑双指针法了,i指向起始位置,j指向终止位置。
定义一个新数组result,和A数组一样的大小,让k指向result数组终止位置。
class Solution {
public int[] sortedSquares(int[] nums) {
int right = nums.length - 1;
int left = 0;
int[] result = new int[nums.length];
int index = result.length - 1;
while (left <= right) {
if (nums[left] * nums[left] > nums[right] * nums[right]) {
// 正数的相对位置是不变的, 需要调整的是负数平方后的相对位置
result[index--] = nums[left] * nums[left];
++left;
} else {
result[index--] = nums[right] * nums[right];
--right;
}
}
return result;
}
}
最后说一句
感谢大家的阅读,文章通过网络资源与自己的学习过程整理出来,希望能帮助到大家。
才疏学浅,难免会有纰漏,如果你发现了错误的地方,可以提出来,我会对其加以修改。