Redis使用,AOF、RDB

news2025/1/13 17:42:18

前言

如果有人问你:"你会把 Redis 用在什么业务场景下?"

我想你大概率会说:"我会把它当作缓存使用,因为它把后端数据库中的数据存储在内存中,然后直接从内存中读取数据,响应速度会非常快。"

没错,这确实是 Redis 的一个普遍使用场景,但是,这里也有一个绝对不能忽略的问题:「一旦服务器宕机,内存中的数据将全部丢失」 。

目前,Redis 的持久化主要有两大机制,即 「AOF(Append Only File)日志和 RDB(Redis DataBase) 快照」 。

AOF

日志是如何实现的

说到日志,我们比较熟悉的是数据库的写前日志(Write Ahead Log, WAL),在实际写数据前,先把修改的数据记到日志文件中,以便故障时进行恢复。不过,AOF 日志正好相反,它是写后日志,"写后"的意思是 Redis 是先执行命令,把数据写入内存,然后才记录日志。

AOF日志是如何实现的

AOF 里记录的是 Redis 收到的每一条命令,这些命令是以文本形式保存的。

我们以 Redis 收到“set testkey testvalue”命令后记录的日志为例,看看 AOF 日志的内容。其中,“*3”表示当前命令有三个部分,每部分都是由“数字开头,后面紧跟着具体的命令、键或值。这里,数字表示这部分中的命令、键或值一共有多少字节。例如,3 set”表示这部分有 3 个字节,也就是“set”命令。

AOF日志是如何实现的

写后日志的优势与风险

「为了避免额外的检查开销,Redis 在向 AOF 里面记录日志的时候,并不会先去对这些命令进行语法检查」 。

如果先记日志再执行命令的话,日志中就有可能记录了错误的命令,Redis 在使用日志恢复数据时,就可能会出错。而写后日志这种方式,就是先让系统执行命令,只有命令能执行成功,才会被记录到日志中,否则,系统就会直接向客户端报错。

所以,Redis 使用写后日志这一方式的一大好处是,可以避免出现记录错误命令的情况。

除此之外,写后日志一个好处:它是在命令执行后才记录日志,「不会阻塞当前的写操作」 。

AOF 也有两个潜在的风险:

  • 风险一:如果刚执行完一个命令,还没有来得及记日志就宕机了,那么这个命令和相应的数据就有丢失的风险。

    • 如果此时 Redis 是用作缓存,还可以从后端数据库重新读入数据进行恢复。

    • 如果 Redis 是直接用作数据库的话,此时,因为命令没有记入日志,所以就无法用日志进行恢复了。

  • 风险二:AOF 虽然避免了对当前命令的阻塞,但可能会给下一个操作带来阻塞风险。

    • AOF 日志也是在主线程中执行(写回策略为 always 时),如果在把日志文件写入磁盘时,磁盘写压力大,就会导致写盘很慢,进而导致后续的操作也无法执行了。

这两个风险都是和 AOF 写回磁盘的时机相关的。这也就意味着,如果我们能够控制一个写命令执行完后 AOF 日志写回磁盘的时机,这两个风险就解除了。

日志的写回策略

AOF 机制一共有三种写回策略,也就是 AOF 配置项 appendfsync 的三个可选值。

  • 「Always 同步写回」 :每个写命令执行完,立马同步地将日志写回磁盘;

  • 「Everysec 每秒写回」 :每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲区,每隔一秒把缓冲区中的内容写入磁盘;

  • 「No 操作系统控制的写回」 :每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲区,由操作系统决定何时将缓冲区内容写回磁盘。

针对避免主线程阻塞和减少数据丢失问题,这三种写回策略都无法做到两全其美。

日志的写回策略

我们就可以根据系统对高性能和高可靠性的要求,来选择使用哪种写回策略了。

  • 想要获得高性能,就选择 No 策略;

  • 想要得到高可靠性保证,就选择 Always 策略;

  • 允许数据有一点丢失,又希望性能别受太大影响的话,那么就选择 Everysec 策略。

日志的重写

重写的作用

AOF 是以文件的形式在记录接收到的所有写命令。「随着接收的写命令越来越多,AOF 文件会越来越大」 。这也就意味着,我们一定要小心 AOF 文件过大带来的性能问题,主要在于以下三个方面:

  • 一是,文件系统本身对文件大小有限制,无法保存过大的文件;

  • 二是,如果文件太大,之后再往里面追加命令记录的话,效率也会变低;

  • 三是,如果发生宕机,AOF 中记录的命令要一个个被重新执行,用于故障恢复,如果日志文件太大,整个恢复过程就会非常缓慢,这就会影响到 Redis 的正常使用。

AOF 重写机制就是在重写时,Redis 根据数据库的现状创建一个新的 AOF 文件,也就是说,「读取数据库中的所有键值对,然后对每一个键值对用一条命令记录它的写入」 。重写机制具有“多变一”功能。所谓的“多变一”,也就是说,旧日志文件中的多条命令,在重写后的新日志中变成了一条命令。

重写的作用

重写的过程

AOF 日志由主线程写回不同,重写过程是由「后台子进程 bgrewriteaof 来完成的,这也是为了避免阻塞主线程」 ,导致数据库性能下降。

我把重写的过程总结为“「一个拷贝,两处日志」 ”。

“一个拷贝”就是指,每次执行重写时,主线程 fork 出后台的 bgrewriteaof 子进程。此时,fork 会把主线程的内存拷贝一份给 bgrewriteaof 子进程,这里面就包含了数据库的最新数据。然后,bgrewriteaof 子进程就可以在不影响主线程的情况下,逐一把拷贝的数据写成操作,记入重写日志。

第一处日志,指的是因为主线程未阻塞,仍然可以处理新来的操作,Redis 会把这个操作写到它的缓冲区。这样一来,即使宕机了,这个 AOF 日志的操作仍然是齐全的,可以用于恢复。

第二处日志,就是指新的 AOF 重写日志。这个操作也会被写到重写日志的缓冲区。这样,重写日志也不会丢失最新的操作。等到拷贝数据的所有操作记录重写完成后,重写日志记录的这些最新操作也会写入新的 AOF 文件,以保证数据库最新状态的记录。

此时,我们就可以用新的 AOF 文件替代旧文件了。

重写的过程

总结来说,每次 AOF 重写时,Redis 会先执行一个内存拷贝,用于重写;然后,使用两个日志保证在重写过程中,新写入的数据不会丢失。而且,「因为 Redis 采用子进程进行日志重写,所以,这个过程并不会阻塞主线程」 。

正因为记录的是操作命令,而不是实际的数据,所以,用 AOF 方法进行故障恢复的时候,需要逐一把操作日志都执行一遍。如果操作日志非常多,Redis 就会恢复得很缓慢,影响到正常使用。这当然不是理想的结果。那么,还有没有既可以保证可靠性,还能在宕机时实现快速恢复的其他方法呢?

RDB

对 Redis 来说,它实现类似照片记录效果的方式,把某一时刻的状态以文件的形式写到磁盘上,也就是快照(RDB 文件)。这样一来,即使宕机,快照文件也不会丢失,数据的可靠性也就得到了保证。

和 AOF 相比,RDB 记录的是某一时刻的数据,并不是操作,所以,在做数据恢复时,我们可以直接把 RDB 文件读入内存,很快地完成恢复。

快照的原理

Redis 提供了两个命令来生成 RDB 文件,分别是 save 和 bgsave。

  • 「save」 :在主线程中执行,会导致阻塞;

  • 「bgsave」 :创建一个子进程,专门用于写入 RDB 文件,避免了主线程的阻塞,这也是 Redis RDB 文件生成的默认配置。

我们可以通过 bgsave 命令来执行全量快照,这既提供了数据的可靠性保证,也避免了对 Redis 的性能影响。

在执行快照的同时,Redis 就会借助操作系统提供的写时复制技术(Copy-On-Write, COW),正常处理写操作。bgsave 子进程是由主线程 fork 生成的,可以共享主线程的所有内存数据。bgsave 子进程运行后,开始读取主线程的内存数据,并把它们写入 RDB 文件。

如果主线程对这些数据也都是读操作(例如图中的键值对 A),那么,主线程和 bgsave 子进程相互不影响。但是,如果主线程要修改一块数据(例如图中的键值对 C),那么,这块数据就会被复制一份,生成该数据的副本(键值对 C’)。然后,主线程在这个数据副本上进行修改。同时,bgsave 子进程可以继续把原来的数据(键值对 C)写入 RDB 文件。

快照的原理

这样既保证了快照的完整性,也允许主线程同时对数据进行修改,避免了对正常业务的影响。

混合 AOF/RDB

虽然 bgsave 执行时不阻塞主线程,但是,如果频繁地执行全量快照,也会带来两方面的开销。

一方面,频繁将全量数据写入磁盘,会给磁盘带来很大压力,多个快照竞争有限的磁盘带宽,前一个快照还没有做完,后一个又开始做了,容易造成恶性循环(所以,在 Redis 中如果有一个 bgsave 在运行,就不会再启动第二个 bgsave 子进程)。

另一方面,bgsave 子进程需要通过 fork 操作从主线程创建出来。虽然,子进程在创建后不会再阻塞主线程,但是,「fork 这个创建过程本身会阻塞主线程」 ,而且主线程的内存越大,阻塞时间越长。

Redis 4.0 中提出了一个混合使用 AOF 日志和内存快照的方法。简单来说,「内存快照以一定的频率执行,在两次快照之间,使用 AOF 日志记录这期间的所有命令操作」 。这样一来,快照不用很频繁地执行,这就避免了频繁 fork 对主线程的影响。而且,AOF 日志也只用记录两次快照间的操作,也就是说,不需要记录所有操作了,因此,就不会出现文件过大的情况了,也可以避免重写开销。

混合 AOF/RDB

总结

最后,关于 AOF 和 RDB 的选择问题,我想再给你提三点建议:

  • 数据不能丢失时,内存快照和 AOF 的混合使用是一个很好的选择;

  • 如果允许分钟级别的数据丢失,可以只使用 RDB;

  • 如果只用 AOF,优先使用 everysec 的配置选项,因为它在可靠性和性能之间取了一个平衡。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/379371.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

“速通“ 老生常谈的HashMap [实现原理源码解读]

👳我亲爱的各位大佬们好😘😘😘 ♨️本篇文章记录的为 HashMap 实现原理&&源码解读 相关内容,适合在学Java的小白,帮助新手快速上手,也适合复习中,面试中的大佬🙉🙉&#x1f…

RocketMQ动态增加NameServer

前言 通过HTTP服务来设置NameServer地址,是唯一支持动态增加NameServer的方式,无需重启其它组件 网上搜了下没看到有兄弟们演示这块,所以刚才自己试了试,做个笔记 本文有详细的演示过程 都知道NameServer有4种配置方式&#xff0…

simulink入门指南

系列文章目录 文章目录系列文章目录常用操作技巧项目练习 - 动态系统二阶系统建模比例积分控制燕子俯冲系统建模滤波位操作总结常用操作技巧 画面缩放 空格键 鼠标左键: 拖拽空格键: fit屏幕 信号操作 双击signal可添加标签, 鼠标右键拖拽可给信号添加分支同一分支上的sig…

【并发基础】线程,进程,协程的详细解释

目录 一、什么是进程和线程 1.1 进程是什么呢? 1.2 线程又是什么呢? 1.3 线程和进程之间的关系 操作系统、进程、线程之间的关系图: 进程与线程的模型图: 下面来思考这样一个问题:为什么程序计数器、虚拟机栈和本地方法…

QNX7.1 交叉编译开源库

1.下载QNX7.1 SDK并解压 ITL:~/work/tiqnx710$ ls -l 总用量 16 drwxrwxr-x 4 xxx4096 1月 28 13:38 host -rwxrwxr-x 1 xxx 972 1月 28 13:38 qnxsdp-env.bat -rwxrwxr-x 1 xxx 1676 1月 28 13:38 qnxsdp-env.sh drwxrwxr-x 3 xxx 4096 1月 28 13:38 target xxxITL:~/work/ti…

NetApp SnapCenter 备份管理 ——借助应用程序一致的数据备份管理,简化混合云操作

NetApp SnapCenter 简单、可扩展、赋权:跨 Data Fabric 的企业级数据保护和克隆管理 主要优势 • 利用与应用程序集成的工作流和预定义策略简化备份、恢复和克隆管理。 • 借助基于存储的数据管理功能提高性能和可用性,并缩短测试和开发用时。 • 提供基…

干货 | 浅谈机器人强化学习--从仿真到真机迁移

“对于机器人的运动控制,强化学习是广受关注的方法。本期技术干货,我们邀请到了小米工程师——刘天林,为大家介绍机器人(以足式机器人为主)强化学习中的sim-to-real问题及一些主流方法。”一、前言设计并制造可以灵活运…

【靶机】vulnhub靶机cybox1

Vulnhub靶机Cybox下载地址 Cybox: 1.1 ~ VulnHub 信息搜集 首先进行靶机ip的发现。 sudo arp-scan -l 接着使用nmap扫描开放的端口,这里使用扫描全部端口和详细信息太慢了,分开检测 命令:nmap -p 21,25,80,110,143,443 -sV -A 192.168.174…

CentOS救援模式(Rescue Mode)及紧急模式(Emergency Mode)

当CentOS操作系统崩溃,无法正常启动时,可以通过救援模式或者紧急模式进行系统登录。启动CentOS, 当出现下面界面时,按e进入编辑界面。在编辑界面里,加入参数:systemd.unitrescue.target ,然后Ctrl-X启动进入…

Linux服务器上传文件到阿里云oss对象存储的两种方法ossutil、curl

ossutil支持在Windows、Linux、macOS等系统中运行,您可以根据实际环境下载和安装合适的版本。安装过程中,需要使用解压工具(unzip、7z)解压软件包,请提前安装其中的一个解压工具。yum -y install unzipLinux系统一键安…

正点原子第一期

ZYNQ是一个fpga用来硬件编程,外加一个软件编程 FPGA是可通过编程来修改其逻辑功能的数字集成电路 第三篇语法篇 第七章 verilog HDL语法 Verilog的简介 可编程逻辑电路:允许用户自行修改内部连接的集成电路,其内部的电路结构可以通过编程数…

ADAS-CIS相机关键参数综述

引言 “ CIS传感器关键参数是工程师选型参考的依据,抛开镜头,本文介绍CIS可见光传感器关键参数之CRA、QE、CFA、Shutter、SNR等。” 关键参数 CRA CFA(Chief Ray Angle)主光角,在上一篇可见光相机的介绍中我们介绍了Sensor的叠层结构&am…

leecode+剑指offer

1.算法入门14天 1.704二分查找: 题目描述:给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。 思路…

Matlab进阶绘图第3期—方块热图

方块热图是一种特殊的热图(Heatmap)。 与传统热图相比,方块热图通过不同颜色、不同大小的正方形以表示数据/特征的大小,能够更加直观地对数据分布情况进行分析,也因此可以在一些顶级期刊中看到它的身影,比…

数据库设计三大范式

数据库设计遵循三大范式的理由:在面对复杂是数据库设计的时候,设计数据库要遵循一定的规则,有了一定的规范,这样就可以是自己看起来舒服。 1.第一范式(确保每列保持原子性) 第一范式主要是保证数据表中的每一个字段的…

Java缓存面试题——Redis解决方案

文章目录1、什么是缓存击穿?该如何解决2、什么是缓存穿透?该如何解决3、什么是缓存雪崩?该如何解决4、什么是BigKey?该如何解决bigkey的危害发现bigkey解决bigkey5、redis过期策略都有哪些?6、讲一讲Redis缓存的数据一…

FL Studio 21 中文正式版发布支持多种超个性化主题

万众期待的 FL Studio 21 版本正式发布上线,目前在紧锣密鼓的安排上线中,届时所有购买正版 FL Studio 的用户,都可以免费升级到21版! 按照惯例,本次新版也会增加全新插件,来帮助大家更好地创作。今天先给大…

利用 NVIDIATAO 和 WeightBias 加速AI开发

利用 NVIDIATAO 和 Weight&Bias 加速AI开发 利用图像分类、对象检测、自动语音识别 (ASR) 和其他形式的 AI 可以推动公司和商业部门内部的大规模转型。 然而,从头开始构建人工智能和深度学习模型是一项艰巨的任务。 构建这些模型的一个共同先决条件是拥有大量高…

Java枚举详解

一.枚举 1.为什么有枚举? 如果我们的程序需要表示固定的几个值: 比如季节:spring (春),summer(夏),autumn(秋),winter(冬) 用常量表示: public static final int SEASON_SPRING 1;public st…

机械键盘不只有轴体的区别!键帽高度也有些学问

键盘键帽的学问有很多,上篇文章中,笔者和大家聊了键帽的材质和耐油污的问题。 除此之外,键帽的高度和字符的印刷方式也有不同,对于多数机械键盘来说,会发现每一列键帽的倾斜角度都略有不同,使用起来可以减少…