【项目设计】高并发内存池(三)[CentralCache的实现]

news2025/1/14 18:37:05

🎇C++学习历程:入门


  • 博客主页:一起去看日落吗
  • 持续分享博主的C++学习历程
  • 博主的能力有限,出现错误希望大家不吝赐教
  • 分享给大家一句我很喜欢的话: 也许你现在做的事情,暂时看不到成果,但不要忘记,树🌿成长之前也要扎根,也要在漫长的时光🌞中沉淀养分。静下来想一想,哪有这么多的天赋异禀,那些让你羡慕的优秀的人也都曾默默地翻山越岭🐾。

在这里插入图片描述

💐 🌸 🌷 🍀


目录

  • 💐1. centralcache
    • 🌷1.1 centralcache整体设计
    • 🌷1.2 centralcache结构设计
    • 🌷1.3 centralcache核心实现

💐1. centralcache

🌷1.1 centralcache整体设计

当线程申请某一大小的内存时,如果thread cache中对应的自由链表不为空,那么直接取出一个内存块进行返回即可,但如果此时该自由链表为空,那么这时thread cache就需要向central cache申请内存了。

central cache的结构与thread cache是一样的,它们都是哈希桶的结构,并且它们遵循的对齐映射规则都是一样的。这样做的好处就是,当thread cache的某个桶中没有内存了,就可以直接到central cache中对应的哈希桶里去取内存就行了。

  • central cache与thread cache的不同之处

central cache与thread cache有两个明显不同的地方,首先,thread cache是每个线程独享的,而central cache是所有线程共享的,因为每个线程的thread cache没有内存了都会去找central cache,因此在访问central cache时是需要加锁的。

但central cache在加锁时并不是将整个central cache全部锁上了,central cache在加锁时用的是桶锁,也就是说每个桶都有一个锁。此时只有当多个线程同时访问central cache的同一个桶时才会存在锁竞争,如果是多个线程同时访问central cache的不同桶就不会存在锁竞争。

central cache与thread cache的第二个不同之处就是,thread cache的每个桶中挂的是一个个切好的内存块,而central cache的每个桶中挂的是一个个的span。

在这里插入图片描述
每个span管理的都是一个以页为单位的大块内存,每个桶里面的若干span是按照双链表的形式链接起来的,并且每个span里面还有一个自由链表,这个自由链表里面挂的就是一个个切好了的内存块,根据其所在的哈希桶这些内存块被切成了对应的大小。


🌷1.2 centralcache结构设计

  • 页号的类型

每个程序运行起来后都有自己的进程地址空间,在32位平台下,进程地址空间的大小是232;而在64位平台下,进程地址空间的大小就是264

页的大小一般是4K或者8K,我们以8K为例。在32位平台下,进程地址空间就可以被分成 232 / 2 13 = 219 个页,在64位平台下,进程地址空间就可以被分成264 / 2 13 = 251 个页。页号本质与地址是一样的,它们都是一个编号,只不过地址是以一个字节为一个单位,而页是以多个字节为一个单位。

由于页号在64位平台下的取值范围是[0,251 ),因此我们不能简单的用一个无符号整型来存储页号,这时我们需要借助条件编译来解决这个问题。

#ifdef _WIN64
	typedef unsigned long long PAGE_ID;
#elif _WIN32
	typedef size_t PAGE_ID;
#else
	//linux
#endif

需要注意的是,在32位下,_WIN32有定义,_WIN64没有定义;而在64位下,_WIN32和_WIN64都有定义。因此在条件编译时,我们应该先判断_WIN64是否有定义,再判断_WIN32是否有定义。

  • span的结构

central cache的每个桶里挂的是一个个的span,span是一个管理以页为单位的大块内存,span的结构如下:

//管理以页为单位的大块内存
struct Span
{
	PAGE_ID _pageId = 0;        //大块内存起始页的页号
	size_t _n = 0;              //页的数量

	Span* _next = nullptr;      //双链表结构
	Span* _prev = nullptr;

	size_t _useCount = 0;       //切好的小块内存,被分配给thread cache的计数
	void* _freeList = nullptr;  //切好的小块内存的自由链表
};

对于span管理的以页为单位的大块内存,我们需要知道这块内存具体在哪一个位置,便于之后page cache进行前后页的合并,因此span结构当中会记录所管理大块内存起始页的页号。

至于每一个span管理的到底是多少个页,这并不是固定的,需要根据多方面的因素来控制,因此span结构当中有一个_n成员,该成员就代表着该span管理的页的数量。

此外,每个span管理的大块内存,都会被切成相应大小的内存块挂到当前span的自由链表中,比如8Byte哈希桶中的span,会被切成一个个8Byte大小的内存块挂到当前span的自由链表中,因此span结构中需要存储切好的小块内存的自由链表。

span结构当中的_useCount成员记录的就是,当前span中切好的小块内存,被分配给thread cache的计数,当某个span的_useCount计数变为0时,代表当前span切出去的内存块对象全部还回来了,此时central cache就可以将这个span再还给page cache。

每个桶当中的span是以双链表的形式组织起来的,当我们需要将某个span归还给page cache时,就可以很方便的将该span从双链表结构中移出。如果用单链表结构的话就比较麻烦了,因为单链表在删除时,需要知道当前结点的前一个结点。

  • 双链表结构

根据上面的描述,central cache的每个哈希桶里面存储的都是一个双链表结构,对于该双链表结构我们可以对其进行封装。

//带头双向循环链表
class SpanList
{
public:
	SpanList()
	{
		_head = new Span;
		_head->_next = _head;
		_head->_prev = _head;
	}
	void Insert(Span* pos, Span* newSpan)
	{
		assert(pos);
		assert(newSpan);

		Span* prev = pos->_prev;

		prev->_next = newSpan;
		newSpan->_prev = prev;

		newSpan->_next = pos;
		pos->_prev = newSpan;
	}
	void Erase(Span* pos)
	{
		assert(pos);
		assert(pos != _head); //不能删除哨兵位的头结点

		Span* prev = pos->_prev;
		Span* next = pos->_next;

		prev->_next = next;
		next->_prev = prev;
	}
private:
	Span* _head;
public:
	std::mutex _mtx; //桶锁
};

需要注意的是,从双链表删除的span会还给下一层的page cache,相当于只是把这个span从双链表中移除,因此不需要对删除的span进行delete操作。

  • central cache的结构

central cache的映射规则和thread cache是一样的,因此central cache里面哈希桶的个数也是208,但central cache每个哈希桶中存储就是我们上面定义的双链表结构。

class CentralCache
{
public:
	//...
private:
	SpanList _spanLists[NFREELISTS];
};

central cache和thread cache的映射规则一样,有一个好处就是,当thread cache的某个桶没有内存了,就可以直接去central cache对应的哈希桶进行申请就行了。


🌷1.3 centralcache核心实现

  • central cache的实现方式

每个线程都有一个属于自己的thread cache,我们是用TLS来实现每个线程无锁的访问属于自己的thread cache的。而central cache和page cache在整个进程中只有一个,对于这种只能创建一个对象的类,我们可以将其设置为单例模式。

单例模式可以保证系统中该类只有一个实例,并提供一个访问它的全局访问点,该实例被所有程序模块共享。单例模式又分为饿汉模式和懒汉模式,懒汉模式相对较复杂,我们这里使用饿汉模式就足够了。

//单例模式
class CentralCache
{
public:
	//提供一个全局访问点
	static CentralCache* GetInstance()
	{
		return &_sInst;
	}
private:
	SpanList _spanLists[NFREELISTS];
private:
	CentralCache() //构造函数私有
	{}
	CentralCache(const CentralCache&) = delete; //防拷贝

	static CentralCache _sInst;
};

为了保证CentralCache类只能创建一个对象,我们需要将central cache的构造函数和拷贝构造函数设置为私有,或者在C++11中也可以在函数声明的后面加上=delete进行修饰。

CentralCache类当中还需要有一个CentralCache类型的静态的成员变量,当程序运行起来后我们就立马创建该对象,在此后的程序中就只有这一个单例了。

CentralCache CentralCache::_sInst;

最后central cache还需要提供一个公有的成员函数,用于获取该对象,此时在整个进程中就只会有一个central cache对象了。

  • 慢开始反馈调节算法

当thread cache向central cache申请内存时,central cache应该给出多少个对象呢?这是一个值得思考的问题,如果central cache给的太少,那么thread cache在短时间内用完了又会来申请;但如果一次性给的太多了,可能thread cache用不完也就浪费了。

我们这里采用了一个慢开始反馈调节算法。当thread cache向central cache申请内存时,如果申请的是较小的对象,那么可以多给一点,但如果申请的是较大的对象,就可以少给一点。

我们就可以根据所需申请的对象的大小计算出具体给出的对象个数,并且可以将给出的对象个数控制到2~512个之间。也就是说,就算thread cache要申请的对象再小,我最多一次性给出512个对象;就算thread cache要申请的对象再大,我至少一次性给出2个对象

//管理对齐和映射等关系
class SizeClass
{
public:
	//thread cache一次从central cache获取对象的上限
	static size_t NumMoveSize(size_t size)
	{
		assert(size > 0);
	
		//对象越小,计算出的上限越高
		//对象越大,计算出的上限越低
		int num = MAX_BYTES / size;
		if (num < 2)
			num = 2;
		if (num > 512)
			num = 512;
	
		return num;
	}
};

但就算申请的是小对象,一次性给出512个也是比较多的,基于这个原因,我们可以在FreeList结构中增加一个叫做_maxSize的成员变量,该变量的初始值设置为1,并且提供一个公有成员函数用于获取这个变量。也就是说,现在thread cache中的每个自由链表都会有一个自己的_maxSize。

//管理切分好的小对象的自由链表
class FreeList
{
public:
	size_t& MaxSize()
	{
		return _maxSize;
	}

private:
	void* _freeList = nullptr; //自由链表
	size_t _maxSize = 1;
};

此时当thread cache申请对象时,我们会比较_maxSize和计算得出的值,取出其中的较小值作为本次申请对象的个数。此外,如果本次采用的是_maxSize的值,那么还会将thread cache中该自由链表的_maxSize的值进行加一。

因此,thread cache第一次向central cache申请某大小的对象时,申请到的都是一个,但下一次thread cache再向central cache申请同样大小的对象时,因为该自由链表中的_maxSize增加了,最终就会申请到两个。直到该自由链表中_maxSize的值,增长到超过计算出的值后就不会继续增长了,此后申请到的对象个数就是计算出的个数。(这有点像网络中拥塞控制的机制)

  • 从中心缓存获取对象

每次thread cache向central cache申请对象时,我们先通过慢开始反馈调节算法计算出本次应该申请的对象的个数,然后再向central cache进行申请。

如果thread cache最终申请到对象的个数就是一个,那么直接将该对象返回即可。为什么需要返回一个申请到的对象呢?因为thread cache要向central cache申请对象,其实由于某个线程向thread cache申请对象但thread cache当中没有,这才导致thread cache要向central cache申请对象。因此central cache将对象返回给thread cache后,thread cache会再将该对象返回给申请对象的线程。

但如果thread cache最终申请到的是多个对象,那么除了将第一个对象返回之外,还需要将剩下的对象挂到thread cache对应的哈希桶当中。

//从中心缓存获取对象
void* ThreadCache::FetchFromCentralCache(size_t index, size_t size)
{
	//慢开始反馈调节算法
	//1、最开始不会一次向central cache一次批量要太多,因为要太多了可能用不完
	//2、如果你不断有size大小的内存需求,那么batchNum就会不断增长,直到上限
	size_t batchNum = std::min(_freeLists[index].MaxSize(), SizeClass::NumMoveSize(size));
	if (batchNum == _freeLists[index].MaxSize())
	{
		_freeLists[index].MaxSize() += 1;
	}
	void* start = nullptr;
	void* end = nullptr;
	size_t actualNum = CentralCache::GetInstance()->FetchRangeObj(start, end, batchNum, size);
	assert(actualNum >= 1); //至少有一个

	if (actualNum == 1) //申请到对象的个数是一个,则直接将这一个对象返回即可
	{
		assert(start == end);
		return start;
	}
	else //申请到对象的个数是多个,还需要将剩下的对象挂到thread cache中对应的哈希桶中
	{
		_freeLists[index].PushRange(NextObj(start), end);
		return start;
	}
}
  • 从中心缓存获取一定数量的对象

这里我们要从central cache获取n个指定大小的对象,这些对象肯定都是从central cache对应哈希桶的某个span中取出来的,因此取出来的这n个对象是链接在一起的,我们只需要得到这段链表的头和尾即可,这里可以采用输出型参数进行获取。

//从central cache获取一定数量的对象给thread cache
size_t CentralCache::FetchRangeObj(void*& start, void*& end, size_t batchNum, size_t size)
{
    size_t index = SizeClass::Index(size);
    _spanLists[index]._mtx.lock();//加锁
    
    //在对应哈希桶中获取一个非空的span
    Span* span = GetOneSpan(_spanLists[index], size);
    assert(span); //span不为空
    assert(span->_freeList); //span当中的自由链表也不为空
    
    //从span中获取n个对象
    //如果不够n个,有多少拿多少
    start = span->_freeList;
    end = start;
    size_t i = 0;
    size_t actualNum = 1;
    while ( i < batchNum - 1 && NextObj(end) != nullptr)
    {
        end = NextObj(end);
        ++actualNum;
        ++i;
    }
    span->_freeList = NextObj(end); //取完后剩下的对象继续放到自由链表
    NextObj(end) = nullptr; //取出的一段链表的表尾置空
//    span->_useCount += actualNum; //更新被分配给thread cache的计数

    _spanLists[index]._mtx.unlock(); //解锁
    
    return actualNum;
    
}

由于central cache是所有线程共享的,所以我们在访问central cache中的哈希桶时,需要先给对应的哈希桶加上桶锁,在获取到对象后再将桶锁解掉。

在向central cache获取对象时,先是在central cache对应的哈希桶中获取到一个非空的span,然后从这个span的自由链表中取出n个对象即可,但可能这个非空的span的自由链表当中对象的个数不足n个,这时该自由链表当中有多少个对象就给多少就行了。

也就是说,thread cache实际从central cache获得的对象的个数可能与我们传入的n值是不一样的,因此我们需要统计本次申请过程中,实际thread cache获取到的对象个数,然后根据该值及时更新这个span中的小对象被分配给thread cache的计数。

需要注意的是,虽然我们实际申请到对象的个数可能比n要小,但这并不会产生任何影响。因为thread cache的本意就是向central cache申请一个对象,我们之所以要一次多申请一些对象,是因为这样一来下次线程再申请相同大小的对象时就可以直接在thread cache里面获取了,而不用再向central cache申请对象。

  • 插入一段范围的对象到自由链表

此外,如果thread cache最终从central cache获取到的对象个数是大于一的,那么我们还需要将剩下的对象插入到thread cache中对应的哈希桶中,为了能让自由链表支持插入一段范围的对象,我们还需要在FreeList类中增加一个对应的成员函数。

//管理切分好的小对象的自由链表
class FreeList
{
public:
	//插入一段范围的对象到自由链表
	void PushRange(void* start, void* end)
	{
		assert(start);
		assert(end);

		//头插
		NextObj(end) = _freeList;
		_freeList = start;
	}
private:
	void* _freeList = nullptr; //自由链表
	size_t _maxSize = 1;
};


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/379324.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

脏牛复现(CVE2016-5195)

nmap扫描全网段&#xff0c;发现存货主机&#xff0c;ip为192.168.85.141nmap 192.168.85.0/24nmap 扫描端口&#xff0c;发现80端口&#xff0c;访问该网站nmap -p1-65535 192.168.85.141扫描该网站目录&#xff0c;什么也没扫出来 &#xff0c;dirb扫描目录的字典在usr/share…

Android TV UI开发常用知识

导入依赖 Google官方为Android TV的UI开发提供了一系列的规范组件&#xff0c;在leanback的依赖库中&#xff0c;这里介绍一些常用的组件&#xff0c;使用前需要导入leanback库。 implementation androidx.leanback:leanback:$version常用的页面 这些Fragment有设计好的样式&…

RocketMQ的一些使用理解

1.RocketMQ的生产者生产负载策略&#xff08;3种&#xff09; (1)SelectMessageQueueByHash &#xff08;一致性hash&#xff09; (2)SelectMessageQueueByMachineRoom &#xff08;机器随机&#xff09; (3)SelectMessageQueueByRandom &#xff08;随机&#xff09; 第1种一…

字符流定义及如何深入理解字符流的编码

IputSrem类和OupuSrem类在读写文件时操作的都是字节&#xff0c;如果希望在程序中操作字符&#xff0c;使用这两个类就不太方便&#xff0c;为此JDK提供了字符流。同字节流样&#xff0c;字符流也有两个抽象的顶级父类&#xff0c;分别是Reader和Writer其中&#xff0c;Reader是…

Nvidia jetson nano硬件架构

资料来源 官方文档中心 https://developer.nvidia.com/embedded/downloads -> 选jetson -> Jetson Nano Product Design Guide //产品设计指导(入口) //-> 1.1 References 列出了相关的文档 -> Jetson Nano Developer Kit Carrier Board Specification //板子标注…

MySQL实战之深入浅出索引(下)

1.前言 在上一篇文章中&#xff0c;我们介绍了InnoDB索引的数据结构模型&#xff0c;今天我们再继续聊一下跟MySQL索引有关的概念。 在介绍之前&#xff0c;我们先看一个问题&#xff1a; 表初始化语句 mysql> create table T ( ID int primary key, k int NOT NULL DEFA…

LeetCode 1237. Find Positive Integer Solution for a Given Equation【双指针,二分,交互】

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…

Linux学习--重定向

重定向的意思是&#xff0c;将数据传到其他地方。 符号解释>输出覆盖重定向>>输出追加重定向<或<<标准输入重定向 1、读取文件内容且写入到另一个文件中&#xff0c;覆盖写入文件内容 cat haha.txt > xixi.txt2、追加写入文件内容 cat haha.txt >&g…

2023,年轻人不想买钻石了?

【潮汐商业评论/ 原创】“钻石恒久远&#xff0c;一颗永流传。”很明显&#xff0c;Lily就是这句话的“受害者”。临近婚期的她&#xff0c;在婚戒的选择上犯起了愁&#xff0c;“我现在想到买钻戒&#xff0c;我就头大。买小的凑合一下&#xff0c;耳边传来的都是‘别买一克拉…

Linux命令篇 linux命令大全简洁明了 linux学习笔记

Linux命令篇 linux命令大全简洁明了 linux学习笔记 Linux 命令大全 文章目录Linux 命令大全一、 常用的基础命令查看目录&#xff1a;切换目录&#xff1a;创建和删除&#xff1a;拷贝和移动文件&#xff1a;查看文件内容&#xff1a;其他&#xff1a;小技巧终端命令格式1.1 ls…

如何用3个月零基础入门网络安全?

背景 写这篇教程的初衷是很多朋友都想了解如何入门/转行网络安全&#xff0c;实现自己的“黑客梦”。文章的宗旨是&#xff1a;1.指出一些自学的误区 2.提供客观可行的学习表 3.推荐我认为适合小白学习的资源.大佬绕道哈&#xff01; 一、自学网络安全学习的误区和陷阱 1.不…

基于Conda完成创建多版本python环境

文章目录基于Conda完成创建多版本python环境基于Conda完成创建多版本python环境 通过cmd打开conda环境 d:\ProgramData\Anaconda3\Scripts\activate创建python3.7的环境 conda create -n py3.7 python3.7产生错误 Collecting package metadata (repodata.json): failed Unav…

IEEE14节点系统在如短路分析,潮流研究,互连电网中的研究(Simulink)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

MIMO信道的稀疏性

一. 介绍 本文章将从“信道冲激响应”的角度解释为什么MIMO信道具有稀疏性&#xff0c;公式较多&#xff0c;需要了解以下先验知识&#xff1a; 信道相干带宽与传输信号带宽 带宽与宽带 平坦衰落与频率选择性衰落 信道冲击响应 基带与射频 多径传输与最大传播时延 基带带宽是信…

6个必知的Mysql索引失效场景,别再踩坑了!

今天我来聊聊索引的相关问题&#xff0c;因为索引是大家都比较关心的公共话题&#xff0c;确实有很多坑。不知道你在实际工作中&#xff0c;有没有遇到过下面的这两种情况&#xff1a;明明在某个字段上加了索引&#xff0c;但实际上并没有生效。索引有时候生效了&#xff0c;有…

Linux字符设备驱动模型之设备号

从上文中可知&#xff0c;在Linux用户空间中&#xff0c;如若需要操作硬件设备&#xff0c;均通过/dev目录下的设备文件节点进行操作&#xff0c;基本上每一种设备都会存在一个或者多个的设备节点。 并且在Linux内核中&#xff0c;其表示字符设备的结构成员也提供了相应的设备号…

论文投稿指南——中文核心期刊推荐(外国语言)

【前言】 &#x1f680; 想发论文怎么办&#xff1f;手把手教你论文如何投稿&#xff01;那么&#xff0c;首先要搞懂投稿目标——论文期刊 &#x1f384; 在期刊论文的分布中&#xff0c;存在一种普遍现象&#xff1a;即对于某一特定的学科或专业来说&#xff0c;少数期刊所含…

【学习】笔记本电脑重新安装系统win10

安装系统有很多方法: 软件安装制作启动u盘本文使用的方法就是启动盘安装: 1.首先下载iso镜像文件: msdn我告诉你:MSDN, 我告诉你 - 做一个安静的工具站 (itellyou.cn) 2.下载启动盘制作工具: 制作启动盘rufus:Rufus - 轻松创建 USB 启动盘 3.官网下载: https://do…

【设计模式】18.观察者模式

概述 定义&#xff1a; 又被称为发布-订阅&#xff08;Publish/Subscribe&#xff09;模式&#xff0c;它定义了一种一对多的依赖关系&#xff0c;让多个观察者对象同时监听某一个主题对象。这个主题对象在状态变化时&#xff0c;会通知所有的观察者对象&#xff0c;使他们能…

Word控件Spire.Doc 【书签】教程(2):在 C#、VB.NET 中删除书签

Spire.Doc for .NET是一款专门对 Word 文档进行操作的 .NET 类库。在于帮助开发人员无需安装 Microsoft Word情况下&#xff0c;轻松快捷高效地创建、编辑、转换和打印 Microsoft Word 文档。拥有近10年专业开发经验Spire系列办公文档开发工具&#xff0c;专注于创建、编辑、转…