JVM篇之类加载与字节码技术

news2024/11/15 8:24:38

一.类文件结构

首先获得.class字节码文件

方法:

  • 在文本文档里写入java代码(文件名与类名一致),将文件类型改为.java
  • java终端中,执行javac X:…\XXX.java
// HelloWorld 示例
public class HelloWorld {
    public static void main(String[] args) {
    	System.out.println("hello world");
    }
}

以下是字节码文件

0000000 ca fe ba be 00 00 00 34 00 23 0a 00 06 00 15 09 
0000020 00 16 00 17 08 00 18 0a 00 19 00 1a 07 00 1b 07 
0000040 00 1c 01 00 06 3c 69 6e 69 74 3e 01 00 03 28 29 
0000060 56 01 00 04 43 6f 64 65 01 00 0f 4c 69 6e 65 4e 
0000100 75 6d 62 65 72 54 61 62 6c 65 01 00 12 4c 6f 63 
0000120 61 6c 56 61 72 69 61 62 6c 65 54 61 62 6c 65 01 
0000140 00 04 74 68 69 73 01 00 1d 4c 63 6e 2f 69 74 63 
0000160 61 73 74 2f 6a 76 6d 2f 74 35 2f 48 65 6c 6c 6f 
0000200 57 6f 72 6c 64 3b 01 00 04 6d 61 69 6e 01 00 16 
0000220 28 5b 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 
0000240 69 6e 67 3b 29 56 01 00 04 61 72 67 73 01 00 13 
0000260 5b 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 
0000300 6e 67 3b 01 00 10 4d 65 74 68 6f 64 50 61 72 61 
0000320 6d 65 74 65 72 73 01 00 0a 53 6f 75 72 63 65 46 
0000340 69 6c 65 01 00 0f 48 65 6c 6c 6f 57 6f 72 6c 64
0000360 2e 6a 61 76 61 0c 00 07 00 08 07 00 1d 0c 00 1e 
0000400 00 1f 01 00 0b 68 65 6c 6c 6f 20 77 6f 72 6c 64 
0000420 07 00 20 0c 00 21 00 22 01 00 1b 63 6e 2f 69 74 
0000440 63 61 73 74 2f 6a 76 6d 2f 74 35 2f 48 65 6c 6c 
0000460 6f 57 6f 72 6c 64 01 00 10 6a 61 76 61 2f 6c 61 
0000500 6e 67 2f 4f 62 6a 65 63 74 01 00 10 6a 61 76 61 
0000520 2f 6c 61 6e 67 2f 53 79 73 74 65 6d 01 00 03 6f 
0000540 75 74 01 00 15 4c 6a 61 76 61 2f 69 6f 2f 50 72 
0000560 69 6e 74 53 74 72 65 61 6d 3b 01 00 13 6a 61 76 
0000600 61 2f 69 6f 2f 50 72 69 6e 74 53 74 72 65 61 6d 
0000620 01 00 07 70 72 69 6e 74 6c 6e 01 00 15 28 4c 6a 
0000640 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 
0000660 29 56 00 21 00 05 00 06 00 00 00 00 00 02 00 01 
0000700 00 07 00 08 00 01 00 09 00 00 00 2f 00 01 00 01 
0000720 00 00 00 05 2a b7 00 01 b1 00 00 00 02 00 0a 00 
0000740 00 00 06 00 01 00 00 00 04 00 0b 00 00 00 0c 00 
0000760 01 00 00 00 05 00 0c 00 0d 00 00 00 09 00 0e 00 
0001000 0f 00 02 00 09 00 00 00 37 00 02 00 01 00 00 00 
0001020 09 b2 00 02 12 03 b6 00 04 b1 00 00 00 02 00 0a 
0001040 00 00 00 0a 00 02 00 00 00 06 00 08 00 07 00 0b 
0001060 00 00 00 0c 00 01 00 00 00 09 00 10 00 11 00 00 
0001100 00 12 00 00 00 05 01 00 10 00 00 00 01 00 13 00 
0001120 00 00 02 00 14

根据 JVM 规范,类文件结构如下

u4 			 	  magic
u2           	  minor_version;    
u2           	  major_version;    
u2           	  constant_pool_count;    
cp_info      	  constant_pool[constant_pool_count-1];    
u2           	  access_flags;    
u2           	  this_class;    
u2           	  super_class;   
u2           	  interfaces_count;    
u2           	  interfaces[interfaces_count];   
u2           	  fields_count;    
field_info   	  fields[fields_count];   
u2           	  methods_count;    
method_info  	  methods[methods_count];    
u2           	  attributes_count;    
attribute_info 	  attributes[attributes_count];

1.魔数

u4 magic

对应字节码文件的0~3个字节

0000000 ca fe ba be 00 00 00 34 00 23 0a 00 06 00 15 09

2.版本

u2 minor_version;

u2 major_version;

0000000 ca fe ba be 00 00 00 34 00 23 0a 00 06 00 15 09

34H = 52,代表JDK8

3.常量池

了解即可

查看文档阅读:https://gitee.com/Gu-taicheng/image/raw/master/document/3_%E7%B1%BB%E5%8A%A0%E8%BD%BD%E4%B8%8E%E5%AD%97%E8%8A%82%E7%A0%81%E6%8A%80%E6%9C%AF.pdf

二.字节码指令

1.javap工具

自己分析类文件结构太麻烦了,Oracle提供了javap工具来反编译class文件

javap -v D:\Main.class
C:\Thread_study>javap -v D:\Main.class
Classfile /D:\Main.class
  Last modified 2020-6-6; size 434 bytes
  MD5 checksum df1dce65bf6fb0b4c1de318051f4a67e
  Compiled from "Demo1.java"
public class com.nyima.JVM.day5.Demo1
  minor version: 0
  major version: 52
  flags: ACC_PUBLIC, ACC_SUPER
Constant pool:
   #1 = Methodref          #6.#15         // java/lang/Object."<init>":()V
   #2 = Fieldref           #16.#17        // java/lang/System.out:Ljava/io/PrintStream;
   #3 = String             #18            // hello world
   #4 = Methodref          #19.#20        // java/io/PrintStream.println:(Ljava/lang/String;)V
   #5 = Class              #21            // com/nyima/JVM/day5/Demo1
   #6 = Class              #22            // java/lang/Object
   #7 = Utf8               <init>
   #8 = Utf8               ()V
   #9 = Utf8               Code
  #10 = Utf8               LineNumberTable
  #11 = Utf8               main
  #12 = Utf8               ([Ljava/lang/String;)V
  #13 = Utf8               SourceFile
  #14 = Utf8               Demo1.java
  #15 = NameAndType        #7:#8          // "<init>":()V
  #16 = Class              #23            // java/lang/System
  #17 = NameAndType        #24:#25        // out:Ljava/io/PrintStream;
  #18 = Utf8               hello world
  #19 = Class              #26            // java/io/PrintStream
  #20 = NameAndType        #27:#28        // println:(Ljava/lang/String;)V
  #21 = Utf8               com/nyima/JVM/day5/Demo1
  #22 = Utf8               java/lang/Object
  #23 = Utf8               java/lang/System
  #24 = Utf8               out
  #25 = Utf8               Ljava/io/PrintStream;
  #26 = Utf8               java/io/PrintStream
  #27 = Utf8               println
  #28 = Utf8               (Ljava/lang/String;)V
{
  public com.nyima.JVM.day5.Demo1();
    descriptor: ()V
    flags: ACC_PUBLIC
    Code:
      stack=1, locals=1, args_size=1
         0: aload_0
         1: invokespecial #1                  // Method java/lang/Object."<init>":()V
         4: return
      LineNumberTable:
        line 7: 0

  public static void main(java.lang.String[]);
    descriptor: ([Ljava/lang/String;)V
    flags: ACC_PUBLIC, ACC_STATIC
    Code:
      stack=2, locals=1, args_size=1
         0: getstatic     #2                  // Field java/lang/System.out:Ljava/io/PrintStream;
         3: ldc           #3                  // String hello world
         5: invokevirtual #4                  // Method java/io/PrintStream.println:(Ljava/lang/String;)V

         8: return
      LineNumberTable:
        line 9: 0
        line 10: 8
}

2.图解方法执行流程

原始代码

public class Demo3_1 {    
	public static void main(String[] args) {        
		int a = 10;        
		int b = Short.MAX_VALUE + 1;        
		int c = a + b;        
		System.out.println(c);   
    } 
}

1) 常量池载入运行时常量池

常量池也属于方法区,只不过这里单独提出来了

在这里插入图片描述

2) 方法字节码载入方法区

在这里插入图片描述

3) main 线程开始运行,分配栈帧内存

(stack=2,locals=4) 对应操作数栈有2个空间(每个空间4个字节),局部变量表中有4个槽位

在这里插入图片描述

4) 执行引擎开始执行字节码

bipush 10

  • 将一个 byte 压入操作数栈

    (其长度会补齐 4 个字节),类似的指令还有

  • sipush 将一个 short 压入操作数栈(其长度会补齐 4 个字节)

  • ldc 将一个 int 压入操作数栈

  • ldc2_w 将一个 long 压入操作数栈(分两次压入,因为 long 是 8 个字节)

  • 这里小的数字都是和字节码指令存在一起,超过 short 范围的数字存入了常量池(比如Short.MAX_VALUE + 1)

在这里插入图片描述

istore_1

将操作数栈栈顶元素弹出,放入局部变量表的slot 1中

对应代码中的

a = 10

在这里插入图片描述

ldc #3

  • 读取运行时常量池中#3,即32768(超过short最大值范围的数会被放到运行时常量池中),将其加载到操作数栈中

  • 注意 Short.MAX_VALUE 是 32767,所以 32768 = Short.MAX_VALUE + 1 实际是在编译期间计算好的

在这里插入图片描述

istore_2

将操作数栈中的元素弹出,放到局部变量表的2号位置

对应着代码中的

b = 32768

在这里插入图片描述

iload1、iload2

将局部变量表中1号位置和2号位置的元素放入操作数栈中

  • 因为只能在操作数栈中执行运算操作

在这里插入图片描述
在这里插入图片描述

iadd

将操作数栈中的两个元素弹出栈并相加,结果在压入操作数栈中

在这里插入图片描述

istore 3

将操作数栈中的元素弹出,放入局部变量表的3号位置

对应代码中的

int c = a + b;

在这里插入图片描述
getstatic #4

  • 在运行时常量池中找到#4,发现是一个对象

  • 在堆内存中找到该对象,并将其引用放入操作数栈中

在这里插入图片描述

在这里插入图片描述

iload 3

将局部变量表中3号位置的元素压入操作数栈中

在这里插入图片描述

在这里插入图片描述
invokevirtual 5

  • 找到常量池 #5 项
  • 定位到方法区 java/io/PrintStream.println:(I)V 方法
  • 生成新的栈帧(分配 locals、stack等)
  • 传递参数,执行新栈帧中的字节码
    在这里插入图片描述
  • 执行完毕,弹出栈帧
  • 清除 main 操作数栈内容

在这里插入图片描述

return

  • 完成 main 方法调用
  • 弹出 main 栈帧,程序结束

3.练习-分析i++

源码:

/**
* 从字节码角度分析 a++ 相关题目
*/
public class Demo3_2 {
    public static void main(String[] args) {
        int a = 10;
        int b = a++ + ++a + a--;
        System.out.println(a);
        System.out.println(b);
    }
}

字节码code:

 0: bipush 10
 2: istore_1
 3: iload_1
 4: iinc 1, 1
 7: iinc 1, 1
10: iload_1
11: iadd
12: iload_1
13: iinc 1, -1
16: iadd
17: istore_2

分析:

  • 注意**iinc指令(自增指令)**是直接在局部变量slot上进行运算
  • a++ 和 ++a 的区别是先执行**iload(读取)**还是先执行iinc
    • a++ 是先 iload 再 iinc
    • ++a 是先 iinc 再 iload

图解过长,计算出后观看视频验证答案
https://www.bilibili.com/video/BV1yE411Z7AP?p=112

4.条件判断

几点说明:

  • byte,short,char 都会按 int 比较,因为操作数栈都是 4 字节
  • goto 用来进行跳转到指定行号的字节码

源码:

public class Demo3_3 {
    public static void main(String[] args) {
        int a = 0;
        if(a == 0) {
        	a = 10;
        } else {
        	a = 20;
        }
    }
}

字节码code:

0: iconst_0	 //把 0 压入操作数栈 (比较小的数 -1到5用iconst)
1: istore_1  //把这个 0 赋值给 a(局部变量1号位) 即 a = 0;
2: iload_1  //把局部变量表1号位的值读取到操作数栈
3: ifne 12  // 判断 如果不成立(这里即a不等于0)则跳转到12行,如果等于则继续往下
6: bipush 10  //把 10 放入操作数栈
8: istore_1   //把 10 赋值给 a
9: goto 15   // 跳转到15行
12: bipush 20 //把 20 放入操作数栈
14: istore_1 //把 20 赋值给 a
15: return

5.循环控制

其实循环控制还是前面介绍的那些指令,例如 while 循环

public class Demo3_4 {
    public static void main(String[] args) {
        int a = 0;
        while (a < 10) {
        	a++;
        }
    }
}

code:
0: iconst_0
1: istore_1
2: iload_1
3: bipush 10
5: if_icmpge 14
8: iinc 1, 1
11: goto 2
14: return

再比如 do while 循环:

public class Demo3_5 {
    public static void main(String[] args) {
        int a = 0;
        do {
            a++;
        } while (a < 10);
    }
}

code:
0: iconst_0
1: istore_1
2: iinc 1, 1
5: iload_1
6: bipush 10
8: if_icmplt 2
11: return

最后再看看 for 循环:

public class Demo3_6 {
    public static void main(String[] args) {
        for (int i = 0; i < 10; i++) {
        
        }
    }
}

0: iconst_0
1: istore_1
2: iload_1
3: bipush 10
5: if_icmpge 14
8: iinc 1, 1
11: goto 2
14: return

6.练习-分析x=0(经典)

请从字节码角度分析,下列代码运行的结果:

public class Demo2 {
	public static void main(String[] args) {
		int i=0;
		int x=0;
		while(i<10) {
			x = x++;
			i++;
		}
		System.out.println(x); //接过为0
	}
}

为什么最终的x结果为0呢? 通过分析字节码指令即可知晓:

code:

0: iconst_0	//准备一个常数0
1: istore_1	//将常数0放入局部变量表的1号槽位 i=0
2: iconst_0	//准备一个常数0
3: istore_2	//将常数0放入局部变量的2号槽位 x=0	
4: 
5: bipush        10	//将数字10放入操作数栈中,此时操作数栈中有2个数
7: if_icmpge     21	//比较操作数栈中的两个数,如果下面的数大于上面的数,就跳转到21。这里的比较是将两个数做减法。因为涉及运算操作,所以会将两个数弹出操作数栈来进行运算。运算结束后操作数栈为空
10: iload_2		//将局部变量2号槽位的数放入操作数栈中,放入的值是0
11: iinc          2, 1	//将局部变量2号槽位的数加1,自增后,槽位中的值为1
14: istore_2	//将操作数栈中的数放入到局部变量表的2号槽位,2号槽位的值又变为了0
15: iinc          1, 1 //1号槽位的值自增1
18: goto          4 //跳转到第4条指令
21: getstatic     #2                  // Field java/lang/System.out:Ljava/io/PrintStream;
24: iload_2
25: invokevirtual #3                  // Method java/io/PrintStream.println:(I)V
28: return

简单图解分析(不包含对循环的判断,对循环的判断详情在上面的注释)

因为是循环嘛,就简单的解释下:

x = 0;
x = x++;

code:
0: iconst_0	//准备一个常数0
1: istore_1	//将常数0放入局部变量表的1号槽位 x=0
2: iload_1		//将局部变量表1号槽位的数放入操作数栈中
3: iinc          1, 1	//将局部变量1号槽位的数加1,自增后,槽位中的值为1
4: istore_1	//将操作数栈中的数放入到局部变量表的1号槽位,1号槽位的值又变为了0; 即赋值操作 x = ,赋值操作是赋值操作数栈里的,具体看3.2.2.4中

7.构造方法

1) cinit()V

public class Demo3 {
	static int i = 10;

	static {
		i = 20;
	}

	static {
		i = 30;
	}

	public static void main(String[] args) {
		System.out.println(i); //结果为30
	}
}

编译器会按从上至下的顺序,收集所有 static 静态代码块和静态成员赋值的代码,合并为一个特殊的方法 cinit()V :

stack=1, locals=0, args_size=0
         0: bipush        10
         2: putstatic     #3                  // Field i:I 变量赋值
         5: bipush        20ja
         7: putstatic     #3                  // Field i:I
        10: bipush        30
        12: putstatic     #3                  // Field i:I
        15: return

2) init()V

public class Demo4 {
	private String a = "s1";

	{
		b = 20;
	}

	private int b = 10;

	{
		a = "s2";
	}

	public Demo4(String a, int b) {
		this.a = a;
		this.b = b;
	}

	public static void main(String[] args) {
		Demo4 d = new Demo4("s3", 30);
		System.out.println(d.a);
		System.out.println(d.b);
	}
}
  • 编译器会按从上至下的顺序,收集所有 {} 代码块和成员变量赋值的代码,形成新的构造方法,但原始构造方法内的代码总是在后
  • 如果有多个构造函数,则会一一对应生成多个
  • 简单说:执行顺序:静态代码块 > 代码块 > 构造方法
public cn.itcast.jvm.t3.bytecode.Demo3_8_2(java.lang.String, int);
    descriptor: (Ljava/lang/String;I)V
    flags: ACC_PUBLIC
    Code:
        stack=2, locals=3, args_size=3
        0: aload_0
        1: invokespecial #1 // super.<init>()V
        4: aload_0
        5: ldc #2 // <- "s1"
        7: putfield #3 // -> this.a
        10: aload_0
        11: bipush 20 // <- 20
        13: putfield #4 // -> this.b
        16: aload_0
        17: bipush 10 // <- 10
        19: putfield #4 // -> this.b
        22: aload_0
        23: ldc #5 // <- "s2"
        25: putfield #3 // -> this.a
        28: aload_0 // ------------------------------
        29: aload_1 // <- slot 1(a) "s3" |
        30: putfield #3 // -> this.a |
        33: aload_0 |
        34: iload_2 // <- slot 2(b) 30 |
        35: putfield #4 // -> this.b --------------------
        38: return
    LineNumberTable: ...
    LocalVariableTable:
    Start Length Slot Name Signature
    0 39 0 this Lcn/itcast/jvm/t3/bytecode/Demo3_8_2;
    0 39 1 a Ljava/lang/String;
    0 39 2 b I
    MethodParameters: ...

8.方法调用

public class Demo5 {
	public Demo5() {

	}

	private void test1() {

	}

	private final void test2() {

	}

	public void test3() {

	}

	public static void test4() {

	}

	public static void main(String[] args) {
		Demo5 demo5 = new Demo5();
		demo5.test1();
		demo5.test2();
		demo5.test3();
		Demo5.test4();
	}
}

不同方法在调用时,对应的虚拟机指令有所区别

  • 私有、构造、被final修饰的方法,在调用时都使用invokespecial指令
  • 普通成员方法在调用时,使用invokespecial指令。因为编译期间无法确定该方法的内容,只有在运行期间才能确定
  • 静态方法在调用时使用invokestatic指令
Code:
      stack=2, locals=2, args_size=1
         0: new           #2                  // class com/Demo5 
         3: dup
         4: invokespecial #3                  // Method "<init>":()V
         7: astore_1
         8: aload_1
         9: invokespecial #4                  // Method test1:()V
        12: aload_1
        13: invokespecial #5                  // Method test2:()V
        16: aload_1
        17: invokevirtual #6                  // Method test3:()V
        20: invokestatic  #7                  // Method test4:()V
        23: returnCopy
  • new 是创建【对象】,给对象分配堆内存,执行成功会将【对象引用】压入操作数栈
  • dup 是赋值操作数栈栈顶的内容,本例即为【对象引用】,为什么需要两份引用呢,一个是要配合 - invokespecial 调用该对象的构造方法 “init”😦)V (会消耗掉栈顶一个引用),另一个要 配合 astore_1 赋值给局部变量
  • 终方法(final),私有方法(private),构造方法都是由 invokespecial 指令来调用,属于静态绑定
  • 普通成员方法是由 invokevirtual 调用,属于动态绑定,即支持多态 成员方法与静态方法调用的另一个区别是,执行方法前是否需要【对象引用】

9.多态的原理

因为普通成员方法需要在运行时才能确定具体的内容,所以虚拟机需要调用invokevirtual指令

在执行invokevirtual指令时,经历了以下几个步骤

  • 先通过栈帧中对象的引用找到对象
  • 分析对象头,找到对象实际的Class
  • Class结构中有vtable,它在类加载的链接阶段就已经根据方法的重写规则生成好了
  • 查询vtable找到方法的具体地址
  • 执行方法的字节码

10.异常处理(面试问)

1) try-catch

/**
 *代码
**/
public class Demo3_11_1 {
    public static void main(String[] args) {
        int i = 0;
        try {
        	i = 10;
        } catch (Exception e) {
        	i = 20;
        }
    }
}
public static void main(java.lang.String[]);
    descriptor: ([Ljava/lang/String;)V
    flags: ACC_PUBLIC, ACC_STATIC
    Code:
        stack=1, locals=3, args_size=1
            0: iconst_0
            1: istore_1
            2: bipush 10
            4: istore_1
            5: goto 12
            8: astore_2
            9: bipush 20
            11: istore_1
            12: return
        Exception table: //异常表,用来监测
        from    to target    type
            2    5      8    Class java/lang/Exception
        LineNumberTable: ...
        LocalVariableTable:
        Start Length Slot Name Signature
            9      3    2    e   Ljava/lang/Exception;
            0     13    0   args [Ljava/lang/String;
            2     11    1     i   I
        StackMapTable: ...
    MethodParameters: ...
}
  • 可以看到多出来一个 Exception table 的结构,[from, to) 是前闭后开(也就是检测2~4行)的检测范围,一旦这个范围内的字节码执行出现异常,则通过 type 匹配异常类型,如果一致,进入 target 所指示行号
  • 8行的字节码指令 astore_2 是将异常对象引用存入局部变量表的2号位置(为e)

2) 多个single-catch

public class Demo3_11_2 {
    public static void main(String[] args) {
        int i = 0;
        try {
        	i = 10;
        } catch (ArithmeticException e) {
        	i = 30;
        } catch (NullPointerException e) {
        	i = 40;
        } catch (Exception e) {
        	i = 50;
        }
    }
}
public static void main(java.lang.String[]);
    descriptor: ([Ljava/lang/String;)V
    flags: ACC_PUBLIC, ACC_STATIC
    Code:
        stack=1, locals=3, args_size=1
            0: iconst_0
            1: istore_1
            2: bipush 10
            4: istore_1
            5: goto 26
            8: astore_2
            9: bipush 30
            11: istore_1
            12: goto 26
            15: astore_2
            16: bipush 40
            18: istore_1
            19: goto 26
            22: astore_2
            23: bipush 50
            25: istore_1
            26: return
        Exception table:
        from   to   target   type
           2    5       8    Class java/lang/ArithmeticException
           2    5       15   Class java/lang/NullPointerException
           2    5       22   Class java/lang/Exception
        LineNumberTable: ...
        LocalVariableTable:
        Start    Length    Slot    Name    Signature
            9         3       2       e    Ljava/lang/ArithmeticException;
           16         3       2       e    Ljava/lang/NullPointerException;
           23         3       2       e    Ljava/lang/Exception;
            0        27       0      args  [Ljava/lang/String;
            2         25      1      i     I
        StackMapTable: ...
    MethodParameters: ...
  • 因为异常出现时,只能进入 Exception table 中一个分支,所以局部变量表 slot 2 位置被共用

3) multi-chtch的情况

  • 相当于多个single-catch的优化,把平级的异常写在一起
  • target都一样
public class Demo3_11_3 {
    public static void main(String[] args) {
        try {
        	Method test = Demo3_11_3.class.getMethod("test");
        	test.invoke(null);
        } catch (NoSuchMethodException | IllegalAccessException |
        	InvocationTargetException e) {
        	e.printStackTrace();
        }
    }
    public static void test() {
        System.out.println("ok");
    }
}

4) finally

public class Demo3_11_4 {
    public static void main(String[] args) {
        int i = 0;
        try {
        	i = 10;
        } catch (Exception e) {
        	i = 20;
        } finally {
        	i = 30;
        }
    }
}
public static void main(java.lang.String[]);
    descriptor: ([Ljava/lang/String;)V
    flags: ACC_PUBLIC, ACC_STATIC
    Code:
        stack=1, locals=4, args_size=1
            0: iconst_0
            1: istore_1   // 0 -> i
            /**try块**/
            2: bipush 10  // try --------------------------------------
            4: istore_1   // 10 -> i                                  |
            /**try块执行完后,会执行finally**/                           |
            5: bipush 30  // finally                                  |
            7: istore_1   // 30 -> i                                  |
            8: goto 27    // return -----------------------------------
            /**catch块**/      
            11: astore_2  // catch Exceptin -> e 异常信息放入局部变量表的2号槽位
            12: bipush 20 //         								  |
            14: istore_1  // 20 -> i 								  |
            /**catch块执行完后,会执行finally**/                         |
            15: bipush 30 // finally 								  |
            17: istore_1  // 30 -> i 								  |
            18: goto 27   // return -----------------------------------
            /**出现异常,但未被Exception捕获,会抛出其他异常,这时也需要执行finally块中的代码**/   
            21: astore_3  // catch any -> slot 3 ----------------------
            22: bipush 30 // finally                                  |
            /**同上**/
            24: istore_1  // 30 -> i                                  |
            25: aload_3   // <- slot 3                                |
            26: athrow    // throw 抛出异常-----------------------------
            27: return
        Exception table:
            from to target type
            2    5   11    Class java/lang/Exception
            2    5   21    any // 剩余的异常类型,比如 Error
            11   15  21    any // 剩余的异常类型,比如 Error
        LineNumberTable: ...
        LocalVariableTable:
            Start Length Slot Name  Signature
            12    3      2     e     Ljava/lang/Exception;
            0     28     0     args [Ljava/lang/String;
            2     26     1     i     I
        StackMapTable: ...
    MethodParameters: ...
  • 可以看到 finally 中的代码被复制了 3 份,分别放入 try 流程,catch 流程以及 catch剩余的异常类型流程
  • 注意:虽然从字节码指令看来,每个块中都有finally块,但是finally块中的代码只会被执行一次

5) finally面试题

题一:finally中含有return

public class Demo3 {
	public static void main(String[] args) {
		int i = Demo3.test();
		System.out.println(i);
	}

	public static int test() {
		int i;
		try {
			i = 10;
			return i;
		} finally {
			i = 20;
			return i;
		}
	}
}
public static int test();
    descriptor: ()I
    flags: ACC_PUBLIC, ACC_STATIC
    Code:
        stack=1, locals=2, args_size=0
            0: bipush 10 // <- 10 放入栈顶
            2: istore_0 // 10 -> slot 0 (从栈顶移除了)
            3: bipush 20 // <- 20 放入栈顶
            5: ireturn // 返回栈顶 int(20)
            6: astore_1 // catch any -> slot 1
            7: bipush 20 // <- 20 放入栈顶
            9: ireturn // 返回栈顶 int(20)
        Exception table:
            from to target type
               0  3     6   any
        LineNumberTable: ...
        StackMapTable: ...

所以结果为20

  • 由于 finally 中的 ireturn 被插入了所有可能的流程,因此返回结果肯定以finally的为准

  • 至于字节码中第 2 行,似乎没啥用,且留个伏笔,看下个例子

    • 实际上呢是istore_0后面还有iload_0、和istore_1 用来暂存返回值;

    • 这个时候临时变量表0号位和1号位都是 10,操作数栈为空

    • 然后执行finally,bipush 20后面起始还有,istore_0,iload_0

    • 这个时候呢临时变量表0号位是 10,局部变量表栈顶是20

    • 最后ireturn 20

完整code 
 0: bipush        10
 2: istore_0
 3: iload_0
 4: istore_1  //暂存返回值
 5: bipush        20
 7: istore_0
 8: iload_0
 9: ireturn	//ireturn会返回操作数栈顶的整型值20
//如果出现异常,还是会执行finally块中的内容,没有抛出异常
10: astore_2
11: bipush        20
13: istore_0
14: iload_0
15: ireturn	//这里没有athrow了,也就是如果在finally块中如果有返回操作的话,且try块中出现异常,会吞掉异常!
  • 跟上例中的 finally 相比,发现没有 athrow 了,这告诉我们:如果在 finally 中出现了 return,会吞掉异常

  • 所以不要在finally中进行返回操作

public class Demo3 {
   public static void main(String[] args) {
      int i = Demo3.test();
      //最终结果为20
      System.out.println(i);
   }

   public static int test() {
      int i;
      try {
         i = 10;
         //这里应该会抛出异常
         i = i/0;
         return i;
      } finally {
         i = 20;
         return i;
      }
   }
}

会发现打印结果为20,并未抛出异常

题二:finally中不含有return

public class Demo4 {
	public static void main(String[] args) {
		int i = Demo4.test();
		System.out.println(i);
	}

	public static int test() {
		int i = 10;
		try {
			return i;
		} finally {
			i = 20;
		}
	}
}

对应字节码

Code:
     stack=1, locals=3, args_size=0
        0: bipush        10
        2: istore_0 //赋值给i 10
        3: iload_0	//加载到操作数栈顶
        4: istore_1 //加载到局部变量表的1号位置
        5: bipush        20
        7: istore_0 //赋值给i 20
        8: iload_1 //加载局部变量表1号位置的数10到操作数栈
        9: ireturn //返回操作数栈顶元素 10
       10: astore_2
       11: bipush        20
       13: istore_0
       14: aload_2 //加载异常
       15: athrow //抛出异常
     Exception table:
        from    to  target type
            3     5    10   any

即上道题中卖的关子,也解释了;第3,4行的意图就是在1号位上保存好这个return,因为后面还有finally的代码要执行

答案为10

11.synchronized

public class Demo5 {
	public static void main(String[] args) {
		int i = 10;
		Lock lock = new Lock();
		synchronized (lock) {
			System.out.println(i);
		}
	}
}

class Lock{}

对应字节码

Code:
     stack=2, locals=5, args_size=1
        0: bipush        10
        2: istore_1
        3: new           #2                  // class com/nyima/JVM/day06/Lock
        6: dup //复制一份,放到操作数栈顶,用于构造函数消耗
        7: invokespecial #3                  // Method com/nyima/JVM/day06/Lock."<init>":()V
       10: astore_2 //剩下的一份放到局部变量表的2号位置
       11: aload_2 //加载到操作数栈
       12: dup //复制一份,放到操作数栈,用于加锁时消耗
       13: astore_3 //将操作数栈顶元素弹出,暂存到局部变量表的三号槽位。这时操作数栈中有一份对象的引用
       14: monitorenter //加锁
       //锁住后代码块中的操作    
       15: getstatic     #4                  // Field java/lang/System.out:Ljava/io/PrintStream;
       18: iload_1
       19: invokevirtual #5                  // Method java/io/PrintStream.println:(I)V
       //加载局部变量表中三号槽位对象的引用,用于解锁    
       22: aload_3    
       23: monitorexit //解锁
       24: goto          34
       //异常操作    
       27: astore        4
       29: aload_3
       30: monitorexit //解锁
       31: aload         4
       33: athrow
       34: return
     //可以看出,无论何时出现异常,都会跳转到27行,将异常放入局部变量中,并进行解锁操作,然后加载异常并抛出异常。      
     Exception table:
        from    to  target type
           15    24    27   any
           27    31    27   any

三.编译期处理

所谓的 语法糖 ,其实就是指 java 编译器把 *.java 源码编译为 *.class 字节码的过程中,自动生成转换的一些代码,主要是为了减轻程序员的负担,算是 java 编译器给我们的一个额外福利

注意,以下代码的分析,借助了 javap 工具,idea 的反编译功能,idea 插件 jclasslib 等工具。另外, 编译器转换的结果直接就是 class 字节码,只是为了便于阅读,给出了 几乎等价 的 java 源码方式,并不是编译器还会转换出中间的 java 源码,切记。

1.默认构造函数

public class Candy1 {

}

经过编译期优化后

public class Candy1 {
   //这个无参构造器是java编译器帮我们加上的
   public Candy1() {
      //即调用父类 Object 的无参构造方法,即调用 java/lang/Object." <init>":()V
      super();
   }
}

2.自动拆装箱

基本类型和其包装类型的相互转换过程,称为拆装箱

在JDK 5以后,它们的转换可以在编译期自动完成

public class Demo2 {
   public static void main(String[] args) {
      Integer x = 1;
      int y = x;
   }
}

转换过程如下

public class Demo2 {
   public static void main(String[] args) {
      //基本类型赋值给包装类型,称为装箱
      Integer x = Integer.valueOf(1);
      //包装类型赋值给基本类型,称谓拆箱
      int y = x.intValue();
   }
}

3.泛型集合取值

泛型也是在 JDK 5 开始加入的特性,但 java 在编译泛型代码后会执行 泛型擦除 的动作,即泛型信息在编译为字节码之后就丢失了,实际的类型都当做了 Object 类型来处理:

public class Demo3 {
   public static void main(String[] args) {
      List<Integer> list = new ArrayList<>();
      list.add(10);
      Integer x = list.get(0);
   }
}

对应字节码

Code:
    stack=2, locals=3, args_size=1
       0: new           #2                  // class java/util/ArrayList
       3: dup
       4: invokespecial #3                  // Method java/util/ArrayList."<init>":()V
       7: astore_1
       8: aload_1
       9: bipush        10
      11: invokestatic  #4                  // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
      //这里进行了泛型擦除,实际调用的是add(Objcet o)
      14: invokeinterface #5,  2            // InterfaceMethod java/util/List.add:(Ljava/lang/Object;)Z

      19: pop
      20: aload_1
      21: iconst_0
      //这里也进行了泛型擦除,实际调用的是get(Object o)   
      22: invokeinterface #6,  2            // InterfaceMethod java/util/List.get:(I)Ljava/lang/Object;
//这里进行了类型转换,将Object转换成了Integer
      27: checkcast     #7                  // class java/lang/Integer
      30: astore_2
      31: returnCopy

所以调用get函数取值时,有一个类型转换的操作

Integer x = (Integer) list.get(0);

如果要将返回结果赋值给一个int类型的变量,则还有自动拆箱的操作

int x = (Integer) list.get(0).intValue();

4.可变参数

可变参数也是 JDK 5 开始加入的新特性:

public class Demo4 {
   public static void foo(String... args) {
      //将args赋值给arr,可以看出String...实际就是String[] 
      String[] arr = args;
      System.out.println(arr.length);
   }

   public static void main(String[] args) {
      foo("hello", "world");
   }
}

可变参数 String… args 其实是一个 String[] args ,从代码中的赋值语句中就可以看出来。 同 样 java 编译器会在编译期间将上述代码变换为:

public class Demo4 {
   public Demo4 {}

    
   public static void foo(String[] args) {
      String[] arr = args;
      System.out.println(arr.length);
   }

   public static void main(String[] args) {
      foo(new String[]{"hello", "world"});
   }
}

注意,如果调用的是foo(),即未传递参数时,等价代码为foo(new String[]{}),创建了一个空数组,而不是直接传递的null

5.foreach

仍是 JDK 5 开始引入的语法糖,数组的循环:

public class Demo5 {
	public static void main(String[] args) {
        //数组赋初值的简化写法也是一种语法糖。
		int[] arr = {1, 2, 3, 4, 5};
		for(int x : arr) {
			System.out.println(x);
		}
	}
}

编译器会帮我们转换为

public class Demo5 {
    public Demo5 {}

	public static void main(String[] args) {
		int[] arr = new int[]{1, 2, 3, 4, 5};
		for(int i=0; i<arr.length; ++i) {
			int x = arr[i];
			System.out.println(x);
		}
	}
}

如果是集合使用foreach

public class Demo5 {
   public static void main(String[] args) {
      List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);
      for (Integer x : list) {
         System.out.println(x);
      }
   }
}

集合要使用foreach,需要该集合类实现了Iterable接口,因为集合的遍历需要用到迭代器Iterator,实际被编译器转换为迭代器的调用

public class Demo5 {
    public Demo5 {}
    
   public static void main(String[] args) {
      List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);
      //获得该集合的迭代器
      Iterator<Integer> iterator = list.iterator();
      while(iterator.hasNext()) {
         Integer x = iterator.next();
         System.out.println(x);
      }
   }
}

注意
foreach 循环写法,能够配合数组,以及所有实现了 Iterable 接口的集合类一起使用,

其中Iterable 用来获取集合的迭代器( Iterator )

6.switch字符串

从 JDK 7 开始,switch 可以作用于字符串和枚举类,这个功能其实也是语法糖,例如:

public class Demo6 {
   public static void main(String[] args) {
      String str = "hello";
      switch (str) {
         case "hello" :
            System.out.println("h");
            break;
         case "world" :
            System.out.println("w");
            break;
         default:
            break;
      }
   }
}

注意
switch 配合 String 和枚举使用时,变量不能为null,原因分析完语法糖转换后的代码应当自然清楚

会被编译器转换为:

public class Demo6 {
   public Demo6() {
      
   }
   public static void main(String[] args) {
      String str = "hello";
      int x = -1;
      //通过字符串的hashCode+value来判断是否匹配
      switch (str.hashCode()) {
         //hello的hashCode
         case 99162322 :
            //再次比较,因为字符串的hashCode有可能相等
            if(str.equals("hello")) {
               x = 0;
            }
            break;
         //world的hashCode
         case 11331880 :
            if(str.equals("world")) {
               x = 1;
            }
            break;
         default:
            break;
      }

      //用第二个switch在进行输出判断
      switch (x) {
         case 0:
            System.out.println("h");
            break;
         case 1:
            System.out.println("w");
            break;
         default:
            break;
      }
   }
}

过程说明:

  • 在编译期间,单个的switch被分为了两个

    • 第一个用来匹配字符串,并给x赋值

      • 字符串的匹配用到了字符串的hashCode,还用到了equals方法

      • 使用hashCode是为了提高比较效率,使用equals是防止有hashCode冲突(如BM和C.)

      • 第二个用来根据x的值来决定输出语句

      • 例如:

        public class Candy6_2 {
           public static void choose(String str) {
               switch (str) {
                   case "BM": {
                       System.out.println("h");
                       break;
                   }
                   case "C.": {
                       System.out.println("w");
                       break;
                   }
               }
           }
        }
        
        /**
        **会被转换为
        **/
        
        public class Candy6_2 {
           public Candy6_2() {
           }
           public static void choose(String str) {
               byte x = -1;
               switch(str.hashCode()) {
               case 2123: // hashCode 值可能相同,需要进一步用 equals 比较
               	if (str.equals("C.")) {
               		x = 1;
               	} else if (str.equals("BM")) {
               		x = 0;
               	}
               default:
                   switch(x) {
                   case 0:
                   	System.out.println("h");
                   	break;
                   case 1:
                   	System.out.println("w");
                   }
               }
           }
        }
        

7.switch枚举

public class Demo7 {
   public static void main(String[] args) {
      SEX sex = SEX.MALE;
      switch (sex) {
         case MALE:
            System.out.println("man");
            break;
         case FEMALE:
            System.out.println("woman");
            break;
         default:
            break;
      }
   }
}

enum SEX {
   MALE, FEMALE;
}

编译器中执行的代码如下

public class Demo7 {
   /**     
    * 定义一个合成类(仅 jvm 使用,对我们不可见)     
    * 用来映射枚举的 ordinal 与数组元素的关系     
    * 枚举的 ordinal 表示枚举对象的序号,从 0 开始     
    * 即 MALE 的 ordinal()=0,FEMALE 的 ordinal()=1     
    */ 
   static class $MAP {
      //数组大小即为枚举元素个数,里面存放了case用于比较的数字
      static int[] map = new int[2];
      static {
         //ordinal即枚举元素对应所在的位置,MALE为0,FEMALE为1
         map[SEX.MALE.ordinal()] = 1;
         map[SEX.FEMALE.ordinal()] = 2;
      }
   }

   public static void main(String[] args) {
      SEX sex = SEX.MALE;
      //将对应位置枚举元素的值赋给x,用于case操作
      int x = $MAP.map[sex.ordinal()];
      switch (x) {
         case 1:
            System.out.println("man");
            break;
         case 2:
            System.out.println("woman");
            break;
         default:
            break;
      }
   }
}

8.枚举类

JDK 7 新增了枚举类,以前面的性别枚举为例:

enum SEX {
   MALE, FEMALE;
}

转换后的代码

public final class Sex extends Enum<Sex> {   
   //对应枚举类中的元素
   public static final Sex MALE;    
   public static final Sex FEMALE;    
   private static final Sex[] $VALUES;
   
    static {       
    	//调用构造函数,传入枚举元素的值及ordinal
    	MALE = new Sex("MALE", 0);    
        FEMALE = new Sex("FEMALE", 1);   
        $VALUES = new Sex[]{MALE, FEMALE}; 
   }
 	
   //调用父类中的方法
    private Sex(String name, int ordinal) {     
        super(name, ordinal);    
    }
   
    public static Sex[] values() {  
        return $VALUES.clone();  
    }
    public static Sex valueOf(String name) { 
        return Enum.valueOf(Sex.class, name);  
    } 
   
}Copy

9.方法重写时的桥接方法

我们都知道,方法重写时对返回值分两种情况:

  • 父子类的返回值完全一致
  • 子类返回值可以是父类返回值的子类(比较绕口,见下面的例子)
class A {
    public Number m() {
    	return 1;
    }
}
class B extends A {
    @Override
    // 子类 m 方法的返回值是 Integer 是父类 m 方法返回值 Number 的子类
    public Integer m() {
    	return 2;
    }
}

对于子类,java 编译器会做如下处理:

class B extends A {
    public Integer m() {
    	return 2;
    }
    // 此方法才是真正重写了父类 public Number m() 方法
    public synthetic bridge Number m() {
        // 调用 public Integer m()
        return m();
    }
}

其中桥接方法比较特殊,仅对 java 虚拟机可见,并且与原来的 public Integer m() 没有命名冲突,可以
用下面反射代码来验证:

for (Method m : B.class.getDeclaredMethods()) {
	System.out.println(m);
}

//会输出
public java.lang.Integer test.candy.B.m()
public java.lang.Number test.candy.B.m()

10.匿名内部类

public class Demo8 {
   public static void main(String[] args) {
      Runnable runnable = new Runnable() {
         @Override
         public void run() {
            System.out.println("running...");
         }
      };
   }
}

转换后的代码

public class Demo8 {
   public static void main(String[] args) {
      //用额外创建的类来创建匿名内部类对象
      Runnable runnable = new Demo8$1();
   }
}

//创建了一个额外的类,实现了Runnable接口
final class Demo8$1 implements Runnable {
   public Demo8$1() {}

   @Override
   public void run() {
      System.out.println("running...");
   }
}

如果匿名内部类中引用了局部变量

public class Demo8 {
   public static void main(String[] args) {
      int x = 1;
      Runnable runnable = new Runnable() {
         @Override
         public void run() {
            System.out.println(x);
         }
      };
   }
}

转化后代码

public class Demo8 {
   public static void main(String[] args) {
      int x = 1;
      Runnable runnable = new Runnable() {
         @Override
         public void run() {
            System.out.println(x);
         }
      };
   }
}

final class Demo8$1 implements Runnable {
   //多创建了一个变量
   int val$x;
   //变为了有参构造器
   public Demo8$1(int x) {
      this.val$x = x;
   }

   @Override
   public void run() {
      System.out.println(val$x);
   }
}

四.类加载阶段(重要)

1.加载

  • 将类的字节码载入

    方法区

    (1.8后为元空间,在本地内存中)中,内部采用 C++ 的 instanceKlass 描述 java 类,它的重要 field 有:

    • _java_mirror 即 java 的类镜像,例如对 String 来说,它的镜像类就是 String.class,作用是把 klass 暴露给 java 使用
    • _super 即父类
    • _fields 即成员变量
    • _methods 即方法
    • _constants 即常量池
    • _class_loader 即类加载器
    • _vtable 虚方法表
    • _itable 接口方法
  • 如果这个类还有父类没有加载,先加载父类

  • 加载和链接可能是交替运行

在这里插入图片描述

  • instanceKlass 这样的【元数据】是存储在方法区(1.8 后的元空间内,而元空间又位于本地内存中),但 _java_mirror
    是存储在堆中
    • InstanceKlass和*.class(JAVA镜像类 _java_mirror)互相保存了对方的地址
    • 类的对象在对象头中保存了*.class的地址。让对象可以通过其找到方法区中的instanceKlass,从而获取类的各种信息

2.链接

1) 验证

验证类是否符合 JVM规范,安全性检查

例如:

用 UE 等支持二进制的编辑器修改 HelloWorld.class 的魔数(3.1.1),在控制台运行

在这里插入图片描述

2) 准备

为 static 变量分配空间,设置默认值

  • static变量在JDK 7以前是存储与instanceKlass末尾。但在JDK 7以后就存储在_java_mirror末尾了(即堆中)

  • static变量在分配空间和赋值是在两个阶段完成的。分配空间在准备阶段完成,赋值在初始化阶段完成

    • 如果 static 变量是 final 的基本类型,以及字符串常量,那么编译阶段值就确定了,赋值在准备阶段完成

    • 如果 static 变量是 final 的,但属于引用类型(比如 new Object()),那么赋值也会在初始化阶段完成

3) 解析

  • 将常量池中的符号引用解析为直接引用
    • 符号引用:仅仅是个符号,不知道这个类或者方法、属性具体在内存的哪个位置
    • 直接引用:知道这个类或者方法、属性具体在内存的哪个位置
package cn.itcast.jvm.t3.load;
/**
* 解析的含义
*/
public class Load2 {
    public static void main(String[] args) throws ClassNotFoundException,IOException {
        ClassLoader classloader = Load2.class.getClassLoader();
        // loadClass 方法不会导致类的解析和初始化
        Class<?> c = classloader.loadClass("cn.itcast.jvm.t3.load.C");
        // new C(); new会导致类的解析和初始化
        System.in.read();
    }
}

class C {
	D d = new D();
}

class D {
    
}

3.初始化

初始化即调用 ()V ,虚拟机会保证这个类的『构造方法』的线程安全

  • clinit()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块(static{}块)中的语句合并产生的
    • 所以验证类是否被初始化,可以看该类的静态代码块是否被执行

1) 发生时机


类的初始化的懒惰的,以下情况会初始化

  • main 方法所在的类,总会被首先初始化
  • 首次访问这个类的静态变量或静态方法时
  • 子类初始化,如果父类还没初始化,会引发
  • 子类访问父类的静态变量,只会触发父类的初始化
  • Class.forName
  • new 会导致初始化

以下情况不会初始化
  • 访问类的 static final 静态常量(基本类型和字符串)
  • 类对象.class 不会触发初始化
  • 创建该类对象的数组
  • 类加载器的.loadClass方法
  • Class.forNamed的参数2为false时

如下代码验证

package cn.itcast.jvm.t3.load;

import java.io.IOException;

public class Load3 {
    static {
        System.out.println("main init");
    }
    public static void main(String[] args) throws ClassNotFoundException, IOException {
//        // 1. 静态常量不会触发初始化
//        System.out.println(B.b);
//        // 2. 类对象.class 不会触发初始化
//        System.out.println(B.class);
//        // 3. 创建该类的数组不会触发初始化
//        System.out.println(new B[0]);
        // 4. 不会初始化类 B,但会加载 B、A
        ClassLoader cl = Thread.currentThread().getContextClassLoader();
        cl.loadClass("cn.itcast.jvm.t3.load.B");
//        // 5. 不会初始化类 B,但会加载 B、A
//        ClassLoader c2 = Thread.currentThread().getContextClassLoader();
//        Class.forName("cn.itcast.jvm.t3.load.B", false, c2);
        System.in.read();


//        // 1. 首次访问这个类的静态变量或静态方法时
//        System.out.println(A.a);
//        // 2. 子类初始化,如果父类还没初始化,会引发
//        System.out.println(B.c);
//        // 3. 子类访问父类静态变量,只触发父类初始化
//        System.out.println(B.a);
//        // 4. 会初始化类 B,并先初始化类 A
//        Class.forName("cn.itcast.jvm.t3.load.B");
    }
}

class A {
    static int a = 0;
    static {
        System.out.println("a init");
    }
}

class B extends A {
    final static double b = 5.0;
    static boolean c = false;
    static {
        System.out.println("b init");
    }
}

五.类加载器

1.类与类加载器

类加载器虽然只用于实现类的加载动作,但它在Java程序中起到的作用却远超类加载阶段

对于任意一个类,都必须由加载它的类加载器和这个类本身一起共同确立其在Java虚拟机中的唯一性,每一个类加载器,都拥有一个独立的类名称空间。这句话可以表达得更通俗一些:比较两个类是否“相等”,只有在这两个类是由同一个类加载器加载的前提下才有意义,否则,即使这两个类来源于同一个Class文件,被同一个Java虚拟机加载,只要加载它们的类加载器不同,那这两个类就必定不相等

名称加载的类说明
Bootstrap ClassLoader(启动类加载器)JAVA_HOME/jre/lib无法直接访问
Extension ClassLoader(拓展类加载器)JAVA_HOME/jre/lib/ext上级为Bootstrap,显示为null
Application ClassLoader(应用程序类加载器)classpath上级为Extension
自定义类加载器自定义上级为Application
  • 各司其职,每个加载器只加载自己负责目录下的所有的类

  • 层级关系:

    • 自底向上询问有没有加载过,例如String类

      • 自定义类加载器 问 应用程序类加载器有没有加载String,如果没有,继续往上,到达启动类加载器中已经加载过了,则String不用再加载
    • 如果都没有加载过则由最顶级开始往下,查找自己负责的目录下能不能加载;例如自定义的Student类

      • 先往上询问,肯定都没有加载过,然后再一步步下来到应用程序加载器

2.启动类加载器

可通过在控制台输入指令,使得自定义类被启动类加器加载

在正确的路径下执行:java -Xbootclasspath/a:.cn.itcast.jvm.t3.load.Load5

3.扩展类加载类

如果classpath和 JAVA_HOME/jre/lib/ext 下有同名类,加载时会使用拓展类加载器加载。当应用程序类加载器发现拓展类加载器已将该同名类加载过了,则不会再次加载

4.双亲委派模式

所谓的双亲委派,就是指调用类加载器的 loadClass 方法时,查找类的规则

注意
这里的双亲,翻译为上级似乎更为合适,因为它们并没有继承关系

loadClass源码

递归查找

protected Class<?> loadClass(String name, boolean resolve)
    throws ClassNotFoundException
{
    synchronized (getClassLoadingLock(name)) {
        // 首先查找该类是否已经被该类加载器加载过了
        Class<?> c = findLoadedClass(name);
        //如果没有被加载过
        if (c == null) {
            long t0 = System.nanoTime();
            try {
                //看是否被它的上级加载器加载过了 Extension的上级是Bootstarp,但它显示为null
                if (parent != null) {
                    //有上级,就委派上级 这里是递归
                    c = parent.loadClass(name, false);
                } else {
                    //如果没有上级了(ExtClassLoader),则委派BootstrapClassLoader 看是否被启动类加载器加载过
                    c = findBootstrapClassOrNull(name);
                }
            } catch (ClassNotFoundException e) {
                // ClassNotFoundException thrown if class not found
                // from the non-null parent class loader
                //捕获异常,但不做任何处理
            }

            if (c == null) {
                //如果还是没有找到,先让拓展类加载器调用findClass方法去找到该类,如果还是没找到,就抛出异常
                long t1 = System.nanoTime();
                c = findClass(name);

                // 记录时间
                sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
                sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
                sun.misc.PerfCounter.getFindClasses().increment();
            }
        }
        if (resolve) {
            resolveClass(c);
        }
        return c;
    }
}

为了防止内存中出现多个相同的字节码;因为如果没有双亲委派的话,用户就可以自己定义一个java.lang.String类,那么就无法保证类的唯一性。

5.自定义加载器

1) 使用场景

  • 想加载非 classpath 随意路径中的类文件
  • 通过接口来使用实现,希望解耦时,常用在框架设计
  • 这些类希望予以隔离,不同应用的同名类都可以加载,不冲突,常见于 tomcat 容器

2) 步骤

  • 继承ClassLoader父类
  • 要遵从双亲委派机制,重写 findClass 方法
  • 不是重写loadClass方法,否则不会走双亲委派机制
  • 读取类文件的字节码
  • 调用父类的 defineClass 方法来加载类
  • 使用者调用该类加载器的 loadClass 方法

六.破坏双亲委派

那怎么打破双亲委派模型?

自定义类加载器,继承ClassLoader类,重写loadClass方法和findClass方法。

列举一些你知道的打破双亲委派机制的例子,为什么要打破?

  • JNDI 通过引入线程上下文类加载器,可以在 Thread.setContextClassLoader 方法设置,默认是应用程序类加载器,来加载 SPI 的代码。有了线程上下文类加载器,就可以完成父类加载器请求子类加载器完成类加载的行为。打破的原因,是为了 JNDI 服务的类加载器是启动器类加载,为了完成高级类加载器请求子类加载器(即上文中的线程上下文加载器)加载类。

  • Tomcat,应用的类加载器优先自行加载应用目录下的 class,并不是先委派给父加载器,加载不了才委派给父加载器。

    tomcat之所以造了一堆自己的classloader,大致是出于下面三类目的:

    • 对于各个 webapp中的 class和 lib,需要相互隔离,不能出现一个应用中加载的类库会影响另一个应用的情况,而对于许多应用,需要有共享的lib以便不浪费资源。

    • 与 jvm一样的安全性问题。使用单独的 classloader去装载 tomcat自身的类库,以免其他恶意或无意的破坏;
      热部署。

    • tomcat类加载器如下图:

在这里插入图片描述

  • OSGi,实现模块化热部署,为每个模块都自定义了类加载器,需要更换模块时,模块与类加载器一起更换。其类加载的过程中,有平级的类加载器加载行为。打破的原因是为了实现模块热替换。

  • JDK 9,Extension ClassLoader 被 Platform ClassLoader 取代,当平台及应用程序类加载器收到类加载请求,在委派给父加载器加载前,要先判断该类是否能够归属到某一个系统模块中,如果可以找到这样的归属关系,就要优先委派给负责那个模块的加载器完成加载。打破的原因,是为了添加模块化的特性。

七.运行期优化

1.即时编译

JVM 将执行状态分成了 5 个层次:

  • 0层:解释执行,用解释器将字节码翻译为机器码
  • 1层:使用 C1 即时编译器编译执行(不带 profiling)
  • 2层:使用 C1 即时编译器编译执行(带基本的profiling)
  • 3层:使用 C1 即时编译器编译执行(带完全的profiling)
  • 4层:使用 C2 即时编译器编译执行

profiling 是指在运行过程中收集一些程序执行状态的数据,例如【方法的调用次数】,【循环的 回边次数】等

即时编译器(JIT)与解释器的区别

  • 解释器
    • 将字节码解释为机器码,下次即使遇到相同的字节码,仍会执行重复的解释
    • 是将字节码解释为针对所有平台都通用的机器码
  • 即时编译器
    • 将一些字节码编译为机器码,并存入 Code Cache,下次遇到相同的代码,直接执行,无需再编译
    • 根据平台类型,生成平台特定的机器码

对于大部分的不常用的代码,我们无需耗费时间将其编译成机器码,而是采取解释执行的方式运行;另一方面,对于仅占据小部分的热点代码,我们则可以将其编译成机器码,以达到理想的运行速度。 执行效率上简单比较一下 Interpreter < C1 < C2,总的目标是发现热点代码(hotspot名称的由 来),并优化这些热点代码(例如循环1000次 new Obkect对象,一定次数之后,就会把new Object()编译成机器码,提高效率)

逃逸分析

逃逸分析(Escape Analysis)简单来讲就是,Java Hotspot 虚拟机可以分析新创建对象的使用范围,并决定是否在 Java 堆上分配内存的一项技术(例如上述,1000个Object对象循环创建,但是从来没用过,就会在一段时间后发生逃逸,修改字节码,后续使它实际上没有被创建)

逃逸分析的 JVM 参数如下:

  • 开启逃逸分析:-XX:+DoEscapeAnalysis
  • 关闭逃逸分析:-XX:-DoEscapeAnalysis
  • 显示分析结果:-XX:+PrintEscapeAnalysis

逃逸分析技术在 Java SE 6u23+ 开始支持,并默认设置为启用状态,可以不用额外加这个参数

2.方法内联

1) 内联函数

内联函数就是在程序编译时,编译器将程序中出现的内联函数的调用表达式用内联函数的函数体来直接进行替换

C++是否为内联函数由自己决定,Java由编译器决定。Java不支持直接声明为内联函数的,如果想让他内联,你只能够向编译器提出请求: 关键字final修饰 用来指明那个函数是希望被JVM内联的,如

public final void doSomething() {  
        // to do something  
}

总的来说,一般的函数都不会被当做内联函数,只有声明了final后,编译器才会考虑是不是要把你的函数变成内联函数

JVM内建有许多运行时优化。首先短方法更利于JVM推断。流程更明显,作用域更短,副作用也更明显。如果是长方法JVM可能直接就跪了。

2) 举例

private static int square(final int i) {
	return i * i;
}

System.out.println(square(9));

如果发现 square 是热点方法,并且长度不太长时,会进行内联,所谓的内联就是把方法内代码拷贝、
粘贴到调用者的位置:

System.out.println(9 * 9);

还能够进行常量折叠(constant folding)的优化(因为计算结果始终都是81,就当成一个常量看)

System.out.println(81);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/376948.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IB课程体系及计分方式

IB课程体系及计分方式 在全球将近150个国家&#xff0c;超过4000个学校&#xff0c;有100万的IB学生。学生在IB体系中修读相同的教材&#xff0c;学生毕业时参加全球统一考试&#xff0c;试卷的命题及批阅均由IB总部直接统筹规划&#xff0c;全世界的IB学生学术水平因此得以统一…

面试了一个32岁的程序员,一个细节就看出来是培训班的····

首先&#xff0c;我说一句&#xff1a;培训出来的&#xff0c;优秀学员大有人在&#xff0c;我不希望因为带着培训的标签而无法达到用人单位和候选人的双向匹配&#xff0c;是非常遗憾的事情。 最近&#xff0c;在网上看到这样一个留言&#xff0c;引发了程序员这个圈子不少的…

利用逻辑分析仪解析串口通讯数据

利用逻辑分析仪解析串口通讯数据&#x1f527;采用的是市面上最为广泛使用的USB逻辑分析仪: &#x1f4da;资料下载&#xff1a; 链接: https://pan.baidu.com/s/1c9lwWDbtJxaJED-kzSbiJg 提取码: 5vnr&#x1f528;测试工具为&#xff1a;Logic 2.4.6&#xff0c;也可以使用Pu…

华为OD机试题,用 Java 解【开放日活动】问题

最近更新的博客 华为OD机试题,用 Java 解【停车场车辆统计】问题华为OD机试题,用 Java 解【字符串变换最小字符串】问题华为OD机试题,用 Java 解【计算最大乘积】问题华为OD机试题,用 Java 解【DNA 序列】问题华为OD机试 - 组成最大数(Java) | 机试题算法思路 【2023】使…

华为OD机试题,用 Java 解【求字符串中所有整数的最小和】问题

最近更新的博客 华为OD机试题,用 Java 解【停车场车辆统计】问题华为OD机试题,用 Java 解【字符串变换最小字符串】问题华为OD机试题,用 Java 解【计算最大乘积】问题华为OD机试题,用 Java 解【DNA 序列】问题华为OD机试 - 组成最大数(Java) | 机试题算法思路 【2023】使…

【Linux】Linux根文件系统扩容

场景&#xff1a;根文件系统需要至少100GB的剩余空间&#xff0c;但是目前就剩余91GB。因此&#xff0c;我们需要对根文件系统进行扩容。# df -h 文件系统 容量 已用 可用 已用% 挂载点 devtmpfs 3.9G 0 3.9G 0% /dev tmpfs …

文献阅读 Improving Seismic Data Resolution with Deep Generative Networks

题目 Improving Seismic Data Resolution with Deep Generative Networks 使用深度生成网络提高地震数据分辨率 摘要 叠前数据的使用&#xff0c;通常可以来解决噪声迹线、覆盖间隙或不规则/不适当的迹线间距等问题。但叠前数据并不总是可用的。作为替代方案&#xff0c;叠后…

分布式锁实现原理与最佳实践

作者&#xff1a;秦泽涛 阿里云教育基座团队 在单体的应用开发场景中涉及并发同步时&#xff0c;大家往往采用Synchronized&#xff08;同步&#xff09;或同一个JVM内Lock机制来解决多线程间的同步问题。而在分布式集群工作的开发场景中&#xff0c;就需要一种更加高级的锁机制…

AI绘画第一步,安装Stable-Diffusion-WebUI全过程 !

别玩那些小孩子的玩意儿了&#xff0c;大人应该玩这些^_^&#xff01;我是真没想到&#xff0c;AI绘画已经进化到这种程度了。实在是太&#xff01;逼&#xff01;真! 了&#xff01;不上重马赛克都不敢贴图&#xff01;看了这些图&#xff0c;有没有心痒痒的&#xff1f;今天就…

逆向-还原代码之除法 (Interl 64)

除法和32位差不多&#xff0c;毕竟背后的数学公式是一样的。区别只是32位的乘法需要两个寄存器来存放大数相乘的结果&#xff0c;而64位的不需要&#xff0c;一个寄存器就能存下。所以在64位的环境下&#xff0c;多了右移32位这条指令&#xff0c;其他指令一样。 //code #incl…

升级Android Studio Electric Eel问题汇总

1.升级以后找不到java可执行程序 问题原因&#xff1a;升级后&#xff0c;Android Studio自带的java目录不再是根目录/jre&#xff0c;调整为一个新目录 Studio根目录/jbr 修改方法&#xff1a;1&#xff09;修改系统环境变量&#xff0c; JAVA_HOME调整为Studio下对应的java…

烟厂能耗控制管理系统_烟厂能源管理信息系统

烟厂也是能耗大厂&#xff0c;为了更好的让烟厂完成资源调配、成本核算、能耗统计等&#xff0c;需要建立一套有效的能源数据管理系统&#xff0c;对能源进行监测&#xff0c;自动获取能源信息&#xff0c;方便查看厂区能源实时情况。烟厂能耗控制管理系统是利用信息化技术手段…

java多线程(七)线程等待与唤醒

一、wait()、notify()、notifyAll()等方法介绍 在Object.java中&#xff0c;定义了wait(), notify()和notifyAll()等接口。wait()的作用是让当前线程进入等待状态&#xff0c;同时&#xff0c;wait()也会让当前线程释放它所持有的锁。而notify()和notifyAll()的作用&#xff0…

阶段十:总结专题(第六章:缓存篇)

阶段十&#xff1a;总结专题&#xff08;第六章&#xff1a;缓存篇&#xff09;Day-第六章&#xff1a;缓存篇1. Redis 数据类型**String****List****Hash****Sorted Set**2. keys 命令问题3. 过期 key 的删除策略4. Redis 持久化**AOF 持久化****AOF 重写****RDB 持久化****混…

值得关注!可控生成!近期diffusion图像生成进展!

猜您喜欢&#xff1a;深入浅出stable diffusion&#xff1a;AI作画技术背后的潜在扩散模型论文解读戳我&#xff0c;查看GAN的系列专辑~&#xff01;一顿午饭外卖&#xff0c;成为CV视觉的前沿弄潮儿&#xff01;最新最全100篇汇总&#xff01;生成扩散模型Diffusion ModelsECC…

JS中三种主要的遍历对象的方法:for in、Object.keys、Object.getOwnProperty

1、for in 主要用于遍历对象的可枚举属性&#xff0c;包括自有属性、继承自原型的属性 var obj {“name”:“tom”,“sex”:“male”}&#xff1b; Object.defineProperty(obj, “age”, {value:“18”, enumerable:false});//增加不可枚举的属性age Object.prototype.pro…

基于强化学习的多模态优化问题解空间聚类进化算法

Reinforcement-Learning-Based Evolutionary Algorithm Using Solution Space Clustering For Multimodal Optimization Problems 基于强化学习的多模态优化问题解空间聚类进化算法 摘要 在进化算法中&#xff0c;如何有效地选择用于生成后代的交互式解决方案是一个具有挑战性的…

《数据库系统概论》学习笔记——第二章 : 关系数据库

教材为数据库系统概论第五版&#xff08;王珊&#xff09; 这一章前面部分基本概念比较多&#xff0c;但学会对后面的学习有很大帮助。基本出题方向就是关于关系数据库的一些概念&#xff08;比较多&#xff09;&#xff0c;然后计算题基本必考关系代数&#xff0c;一些基本的问…

UEditorPlus v2.9.0发布 文档仓库开源,修复若干问题

UEditor是由百度开发的所见即所得的开源富文本编辑器&#xff0c;基于MIT开源协议&#xff0c;该富文本编辑器帮助不少网站开发者解决富文本编辑器的难点。 UEditorPlus 是有 ModStart 团队基于 UEditor 二次开发的富文本编辑器&#xff0c;主要做了样式的定制&#xff0c;更符…

Hbase资源隔离操作指南

1.检查集群的环境配置 1.1 HBase版本号确认> 5.11.0 引入rsgroup的Patch&#xff1a; [HBASE-6721] RegionServer Group based Assignment - ASF JIRA RegionServer Group based Assignment 社区支持版本&#xff1a;2.0.0 引入rsgroup的CDH版本 5.11.0 https://www.…