H264基本原理

news2024/11/14 6:20:42

前言


H264视频压缩算法现在无疑是所有视频压缩技术中使用最广泛,最流行的。随着 x264/openh264以及ffmpeg等开源库的推出,大多数使用者无需再对H264的细节做过多的研究,这大降低了人们使用H264的成本。

但为了用好H264,我们还是要对H264的基本原理弄清楚才行。今天我们就来看看H264的基本原理。

H264概述


H264压缩技术主要采用了以下几种方法对视频数据进行压缩。包括:

  • 帧内预测压缩,解决的是空域数据冗余问题。

  • 帧间预测压缩(运动估计与补偿),解决的是时域数据冗徐问题。

  • 整数离散余弦变换(DCT),将空间上的相关性变为频域上无关的数据然后进行量化。

  • CABAC压缩。

经过压缩后的帧分为:I帧,P帧和B帧:

  • I帧:关键帧,采用帧内压缩技术。

  • P帧:向前参考帧,在压缩时,只参考前面已经处理的帧。采用帧音压缩技术。

  • B帧:双向参考帧,在压缩时,它即参考前而的帧,又参考它后面的帧。采用帧间压缩技术。

除了I/P/B帧外,还有图像序列GOP。

  • GOP:两个I帧之间是一个图像序列,在一个图像序列中只有一个I帧。如下图所示:

下面我们就来详细描述一下H264压缩技术。

H264压缩技术


H264的基本原理其实非常简单,下我们就简单的描述一下H264压缩数据的过程。通过摄像头采集到的视频帧(按每秒 30 帧算),被送到 H264 编码器的缓冲区中。编码器先要为每一幅图片划分宏块。

以下面这张图为例:

划分宏块


H264默认是使用 16X16 大小的区域作为一个宏块,也可以划分成 8X8 大小。

划分好宏块后,计算宏块的象素值。

以此类推,计算一幅图像中每个宏块的像素值,所有宏块都处理完后如下面的样子。

划分子块


H264对比较平坦的图像使用 16X16 大小的宏块。但为了更高的压缩率,还可以在 16X16 的宏块上更划分出更小的子块。子块的大小可以是 8X16、 16X8、 8X8、 4X8、 8X4、 4X4非常的灵活。

上幅图中,红框内的 16X16 宏块中大部分是蓝色背景,而三只鹰的部分图像被划在了该宏块内,为了更好的处理三只鹰的部分图像,H264就在 16X16 的宏块内又划分出了多个子块。

这样再经过帧内压缩,可以得到更高效的数据。下图是分别使用mpeg-2和H264对上面宏块进行压缩后的结果。其中左半部分为MPEG-2子块划分后压缩的结果,右半部分为H264的子块划压缩后的结果,可以看出H264的划分方法更具优势。

宏块划分好后,就可以对H264编码器缓存中的所有图片进行分组了。

帧分组


对于视频数据主要有两类数据冗余,一类是时间上的数据冗余,另一类是空间上的数据冗余。其中时间上的数据冗余是最大的。下面我们就先来说说视频数据时间上的冗余问题。

为什么说时间上的冗余是最大的呢?假设摄像头每秒抓取30帧,这30帧的数据大部分情况下都是相关联的。也有可能不止30帧的的数据,可能几十帧,上百帧的数据都是关联特别密切的。

对于这些关联特别密切的帧,其实我们只需要保存一帧的数据,其它帧都可以通过这一帧再按某种规则预测出来,所以说视频数据在时间上的冗余是最多的。

为了达到相关帧通过预测的方法来压缩数据,就需要将视频帧进行分组。那么如何判定某些帧关系密切,可以划为一组呢?我们来看一下例子,下面是捕获的一组运动的台球的视频帧,台球从右上角滚到了左下角。

H264编码器会按顺序,每次取出两幅相邻的帧进行宏块比较,计算两帧的相似度。如下图:

通过宏块扫描与宏块搜索可以发现这两个帧的关联度是非常高的。进而发现这一组帧的关联度都是非常高的。因此,上面这几帧就可以划分为一组。其算法是:在相邻几幅图像画面中,一般有差别的像素只有10%以内的点,亮度差值变化不超过2%,而色度差值的变化只有1%以内,我们认为这样的图可以分到一组。

在这样一组帧中,经过编码后,我们只保留第一帖的完整数据,其它帧都通过参考上一帧计算出来。我们称第一帧为IDR/I帧,其它帧我们称为P/B帧,这样编码后的数据帧组我们称为GOP

运动估计与补偿


在H264编码器中将帧分组后,就要计算帧组内物体的运动矢量了。还以上面运动的台球视频帧为例,我们来看一下它是如何计算运动矢量的。

H264编码器首先按顺序从缓冲区头部取出两帧视频数据,然后进行宏块扫描。当发现其中一幅图片中有物体时,就在另一幅图的邻近位置(搜索窗口中)进行搜索。如果此时在另一幅图中找到该物体,那么就可以计算出物体的运动矢量了。下面这幅图就是搜索后的台球移动的位置。

通过上图中台球位置相差,就可以计算出台图运行的方向和距离。H264依次把每一帧中球移动的距离和方向都记录下来就成了下面的样子。

运动矢量计算出来后,将相同部分(也就是绿色部分)减去,就得到了补偿数据。我们最终只需要将补偿数据进行压缩保存,以后在解码时就可以恢复原图了。压缩补偿后的数据只需要记录很少的一点数据。如下所示:

我们把运动矢量与补偿称为帧间压缩技术,它解决的是视频帧在时间上的数据冗余。除了帧间压缩,帧内也要进行数据压缩,帧内数据压缩解决的是空间上的数据冗余。下面我们就来介绍一下帧内压缩技术。

帧内预测


人眼对图象都有一个识别度,对低频的亮度很敏感,对高频的亮度不太敏感。所以基于一些研究,可以将一幅图像中人眼不敏感的数据去除掉。这样就提出了帧内预测技术。

H264的帧内压缩与JPEG很相似。一幅图像被划分好宏块后,对每个宏块可以进行 9 种模式的预测。找出与原图最接近的一种预测模式。

下面这幅图是对整幅图中的每个宏块进行预测的过程。

帧内预测后的图像与原始图像的对比如下:

然后,将原始图像与帧内预测后的图像相减得残差值。

再将我们之前得到的预测模式信息一起保存起来,这样我们就可以在解码时恢复原图了。效果如下:

经过帧内与帧间的压缩后,虽然数据有大幅减少,但还有优化的空间。

对残差数据做DCT


可以将残差数据做整数离散余弦变换,去掉数据的相关性,进一步压缩数据。如下图所示,左侧为原数据的宏块,右侧为计算出的残差数据的宏块。

将残差数据宏块数字化后如下图所示:

将残差数据宏块进行 DCT 转换。

去掉相关联的数据后,我们可以看出数据被进一步压缩了。

做完 DCT 后,还不够,还要进行 CABAC 进行无损压缩。

CABAC


上面的帧内压缩是属于有损压缩技术。也就是说图像被压缩后,无法完全复原。而CABAC属于无损压缩技术。

无损压缩技术大家最熟悉的可能就是哈夫曼编码了,给高频的词一个短码,给低频词一个长码从而达到数据压缩的目的。MPEG-2中使用的VLC就是这种算法,我们以 A-Z 作为例子,A属于高频数据,Z属于低频数据。看看它是如何做的。

CABAC也是给高频数据短码,给低频数据长码。同时还会根据上下文相关性进行压缩,这种方式又比VLC高效很多。其效果如下:

现在将 A-Z 换成视频帧,它就成了下面的样子。

从上面这张图中明显可以看出采用 CACBA 的无损压缩方案要比 VLC 高效的多。

小结


至此,我们就将H264的编码原理讲完了。本篇文章主要讲了以下以点内容:\1. 简音介绍了H264中的一些基本概念。如I/P/B帧, GOP。\2. 详细讲解了H264编码的基本原理,包括:

  • 宏块的划分

  • 图像分组

  • 帧内压缩技术原理

  • 帧间压缩技术原理。

  • DCT

  • CABAC压缩原理。

希望以上内容能对您有所帮助。谢谢!

原文链接 https://zhuanlan.zhihu.com/p/31056455

★文末名片可以免费领取音视频开发学习资料,内容包括(FFmpeg ,webRTC ,rtmp ,hls ,rtsp ,ffplay ,srs)以及音视频学习路线图等等。

见下方!↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/376706.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

决策树在sklearn中的实现

目录 一.模块sklearn.tree 二.建模基本流程 三.DecisionTreeClassifier重要参数 1.criterion 2.random_state & splitter 3.剪枝参数max_depth 4.剪枝参数min_samples_leaf & min_samples_split 5.max_features & min_impurity_decrease 6.class_weight …

Java奠基】掌握Java基础知识

目录 常见字面量 特殊字面量 数据类型 标识符 键盘录入 常见字面量 字面量就是数据在程序中的书写格式,字面量的分类如下: 字面量类型说明举例整数类型不带小数点的数字12,25小数类型带小数点的数字3.14,-5,20…

【设计模式】7.适配器模式

概述 如果去欧洲国家去旅游的话,他们的插座如下图最左边,是欧洲标准。而我们使用的插头如下图最右边的。因此我们的笔记本电脑,手机在当地不能直接充电。所以就需要一个插座转换器,转换器第1面插入当地的插座,第2面供…

易基因|独家分享:高通量测序后的下游实验验证方法——DNA甲基化篇

大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。此前,我们分享了DNA甲基化研究的测序数据挖掘思路(点击查看详情),进而鉴定出研究的目的基因或目标区域的DNA甲基化。做完测序后,…

华为OD机试题,用 Java 解【租车骑绿岛】问题

最近更新的博客 华为OD机试题,用 Java 解【停车场车辆统计】问题华为OD机试题,用 Java 解【字符串变换最小字符串】问题华为OD机试题,用 Java 解【计算最大乘积】问题华为OD机试题,用 Java 解【DNA 序列】问题华为OD机试 - 组成最大数(Java) | 机试题算法思路 【2023】使…

电商(强一致性系统)的场景设计

领域拆分:如何合理地拆分系统? 一般来说,强一致性的系统都会牵扯到“锁争抢”等技术点,有较大的性能瓶颈,而电商时常做秒杀活动,这对系统的要求更高。业内在对电商系统做改造时,通常会从三个方面…

OM | 具有弹性需求的广义随机共乘(拼车)用户均衡问题

编者按: 通过扩展确定性共乘用户均衡问题,提出了具有弹性需求的广义随机共乘用户均衡问题,用于具有共乘出行活动的城市交通网络分析。 1、引言​ 共乘(ridesharing), 即生活中的“拼车”、“顺风车”&am…

华为OD机试题,用 Java 解【斗地主】问题

最近更新的博客 华为OD机试题,用 Java 解【停车场车辆统计】问题华为OD机试题,用 Java 解【字符串变换最小字符串】问题华为OD机试题,用 Java 解【计算最大乘积】问题华为OD机试题,用 Java 解【DNA 序列】问题华为OD机试 - 组成最大数(Java) | 机试题算法思路 【2023】使…

巧用 ChatGPT,让开发者的学习和工作更轻松

引言 随着人工智能技术的快速发展和广泛应用,ChatGPT 作为一种新兴的自然语言处理模型,近期备受瞩目,引发了广泛讨论。 ChatGPT 具有多种应用场景,既可以用作聊天机器人,实现智能问答和自然语言交互,也可…

2.27自动化测试

第零步 根据脑图写测试用例第一步.创建共同类防止每次进行测试不同界面的时候都重新创建驱动浪费时间注意要用static 否则后续无法直接使用getdriver方法第二步 对登录界面写测试用例先在test下创建一个登录类.每个界面用不同的类,防止混在一起并让其继承common包下的commonDri…

让马斯克反悔的毫米波雷达,被国产雷达头部厂商木牛科技迭代到了5D时代

近日,特斯拉或将在其HW4.0硬件系统配置一枚高精度4D毫米波雷达的消息在外网刷屏。据分析,“纯视觉”信仰者马斯克之所以做出这样的决定,一方面是减配了雷达的特斯拉自动驾驶,表现不尽如人意;另一方面也跟毫米波雷达的技…

第13天-仓储服务(仓库管理,采购管理 ,SPU规格维护)

1.仓储服务开发配置 1.1.加入到Nacos注册中心 spring:application:name: gmall-warecloud:nacos:discovery:server-addr: 192.168.139.10:8848namespace: 36854647-e68c-409b-9233-708a2d41702c1.2.配置网关路由 spring:cloud:gateway:routes:- id: ware_routeuri: lb://gmal…

CDH 6.3.2启用YARN高可用

升级原因 CDH平台即将被切换成生产环境,而生产环境几乎都是HA,所以需要将YARN升级成HA。 升级准备 CDH已经成功安装并正常使用CMS的管理员账号正常登陆 CDH启用YARN HA 登陆CMS系统->选择YARN服务->点击进入到YARN服务详情页面,再…

【Yolov5】保姆级别源码讲解之-模型训练部分train.py文件

本次讲解yolov5训练类train.py1.主函数2.main函数2.1 第一部分 进行校验2.2 第二部分 配置resume参数用于中断之后进行训练2.3第三部分 DDP mode2.4 第四部分3.训练结果1.主函数 opt参数部分和main方法 weights:权重文件路径 – cfg:存储模型结构的配置…

解决AAC音频编码时间戳的计算问题

1.主题音频是流式数据,并不像视频一样有P帧和B帧的概念。就像砌墙一样,咔咔往上摞就行了。一般来说,AAC编码中生成文件这一步,如果使用的是OutputStream流写入文件的话,就完全不需要计算时间。但在音视频同步或者使用A…

pytorch入门3--线性回归以及许多python,pytorch函数的用法

先补充一些知识点,这里不一定用得到,后面的学习过程中可能用得到。 1.batch表示批量,就是一批数据集的意思; 2.batch_size表示数据集(样本集、训练集)的大小(数据的个数)&#xff1b…

进程与线程的区别

进程和线程 进程 一个在内存中运行的应用程序。每个进程都有自己独立的一块内存空间,一个进程可以有多个线程,比如在Windows系统中,一个运行的xx.exe就是一个进程。 线程 进程中的一个执行任务(控制单元)&#xf…

深入理解跳表及其在Redis中的应用

前言跳表可以达到和红黑树一样的时间复杂度 O(logN),且实现简单,Redis 中的有序集合对象的底层数据结构就使用了跳表。其作者威廉普评价:跳跃链表是在很多应用中有可能替代平衡树的一种数据结构。本篇文章将对跳表的实现及在Redis中的应用进行…

蓝桥杯:染色时间

蓝桥杯:染色时间https://www.lanqiao.cn/problems/2386/learning/?contest_id80 问题描述 输入格式 输出格式 样例输入输出 样例输入 样例输出 评测用例规模与约定 解题思路:优先队列 AC代码(Java): 问题描述 小蓝有一个 n 行 m 列…

华为OD机试题,用 Java 解【任务混部】问题

最近更新的博客 华为OD机试题,用 Java 解【停车场车辆统计】问题华为OD机试题,用 Java 解【字符串变换最小字符串】问题华为OD机试题,用 Java 解【计算最大乘积】问题华为OD机试题,用 Java 解【DNA 序列】问题华为OD机试 - 组成最大数(Java) | 机试题算法思路 【2023】使…