文章目录
- 一、知识总览
- 二、中断屏蔽方法
- 三、TestAndSet指令
- 四、Swap指令
- 五、总结
一、知识总览
二、中断屏蔽方法
利用“开/关中断指令”实现(与原语的实现思想相同,即在某进程开始访问临界区到结束访问为止都不允许被中断,也就不能发生进程切换,因此也不可能发生两个同时访问临界区的情况)
关中断后即不允许当前进程被中断,也必然不会发生进程切换。
直到当前进程访问完临界区,再执行开中断指令,才有可能有别的进程上处理机并访问临界区。
优点:简单、高效
缺点:不适用于多处理机;只适用于操作系统内核进程,不适用于用户进程(因为开/关中断指令只能运行在内核态,这组指令如果能让用户随意使用会很危险)
三、TestAndSet指令
简称TS指令,也有地方称为TestAndSetLock指令,或TSL指令。
TSL指令是用硬件实现的,执行的过程不允许被中断,只能一气呵成。以下是用c语言描述的逻辑:
//布尔型共享变量lock表示当前临界区是否被加锁
//true表示已加锁,false表示未加锁
bool TsetAndSet(bool *lock){
bool old;
old = *lock; //old用来存放lock原来的值
*lock = true; //无论之前是否已加锁,都将lock设为true
return old; //返回lock原来的值
}
//以下是使用TSL指令实现互斥的算法逻辑
while(TestAndSet(&lock)); //“上锁”并“检查”临界区代码段
lock = flase; //“解锁”
剩余区代码段
若刚开始lock是 false,则TSL返回的old值为 false,while循环条件不满足,直接跳过循环,进入临界区。若刚开始lock是 true,则执行TLS后old返回的值为true,while循环条件满足,会一直循环,直到当前访问临界区的进程在退出区进行“解锁”。
相比软件实现方法,TSL指令把“上锁”和“检查”操作用硬件的方式变成了一气呵成的原子操作。
优点:实现简单,无需像软件实现方法那样严格检查是否会有逻辑漏洞;适用于多处理
缺点:不满足“让权等待”原则,暂时无法进入临界区的进程会占用CPU并循环执行TSL指令,从而导致“忙等”。
四、Swap指令
有的地方也叫Exchange指令,或简称XCHG指令。
Swap指令是用硬件实现的,执行的过程不允许被中断,只能一气呵成。以下是用c语言描述的逻辑:
//Swap指令的作用是交换两个变量的值
Swap(bool *a, bool *b){
bool temp;
temp = *a;
*a = *b;
*b = temp;
}
//以下是Swap指令实现互斥的算法逻辑
//lock表示当前临界区是否被加锁
bool old = true;
while(old == true)
Swap(&lock, &old);
临界区代码段...
lock = flase;
剩余区代码段...
逻辑上来看Swap和TSL并无太大区别,都是先记录下此时临界区是否已经被上锁(记录在old变量上),再将上锁标记lock设置为true,最后检查old,如果old为 false则说明之前没有别的进程对临界区上锁,则可跳出循环,进入临界区。
优点:实现简单,无需像软件实现方法那样严格检查是否会有逻辑漏洞;适用于多处理机环境。
缺点:不满足“让权等待”原则,暂时无法进入临界区的进程会占用CPU并循环执行TSL指令,从而导致“忙等”。