【阿旭机器学习实战】【37】电影推荐系统---基于矩阵分解

news2024/11/6 7:32:50

【阿旭机器学习实战】系列文章主要介绍机器学习的各种算法模型及其实战案例,欢迎点赞,关注共同学习交流。

电影推荐系统

目录

  • 电影推荐系统
  • 1. 问题介绍
    • 1.1推荐系统矩阵分解方法介绍
    • 1.2 数据集:ml-100k
  • 2. 推荐系统实现
    • 2.1 定义矩阵分解函数
    • 2.2 基于上述矩阵分解实现电影推荐
    • 默认的SGD方法
    • 用 surpise 内建的基于最近邻的方法做比较
    • 用 surpise 内建的基于 SVD 的方法做比较

1. 问题介绍

使用矩阵分解, 根据用户给短电影的评分数据, 做一个千人千面的个性化推荐系统。

需要安装推荐系统库surprise, 使用如下命令安装: pip install scikit-surprise

1.1推荐系统矩阵分解方法介绍

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.2 数据集:ml-100k

该数据集包括了943位用户对1682部电影的评分信息(总共100,000),评分也是1-5的整数;

  • u.data文件包含了100,000条评分信息,每条记录的形式:user id | item id | rating | timestamp.(分隔符是一个tab)

2. 推荐系统实现

2.1 定义矩阵分解函数

关注GZH:阿旭算法与机器学习,回复:“电影推荐系统”即可获取本文数据集、源码与项目文档

# 导入 nunpy 和 surprise 辅助库
import numpy as np
import surprise  

注: Surprise库本身没有提供纯粹的矩阵分解的算法, 在这里我们自己实现了基于Alternating Least Squares的矩阵分解, 使用梯度下降法优化;
矩阵分解类MatrixFactorization继承了surprise.AlgoBase, 方便我们使用surpise库提供的其它功能

class MatrixFactorization(surprise.AlgoBase):
    '''基于矩阵分解的推荐.'''
    
    def __init__(self, learning_rate, n_epochs, n_factors, lmd):
        
        self.lr = learning_rate  # 梯度下降法的学习率
        self.n_epochs = n_epochs  # 梯度下降法的迭代次数
        self.n_factors = n_factors  # 分解的矩阵的秩(rank)
        self.lmd = lmd # 防止过拟合的正则化的强度
        
    def fit(self, trainset):
        '''通过梯度下降法训练, 得到所有 u_i 和 p_j 的值'''
        
        print('Fitting data with SGD...')
        
        # 随机初始化 user 和 item 矩阵.
        u = np.random.normal(0, .1, (trainset.n_users, self.n_factors))
        p = np.random.normal(0, .1, (trainset.n_items, self.n_factors))
        
        # 梯度下降法
        for _ in range(self.n_epochs):
            for i, j, r_ij in trainset.all_ratings():
                err = r_ij - np.dot(u[i], p[j])
                # 利用梯度调整 u_i 和 p_j
                u[i] -= -self.lr * err * p[j] + self.lr * self.lmd * u[i]
                p[j] -= -self.lr * err * u[i] + self.lr * self.lmd * p[j]
                # 注意: 修正 p_j 时, 按照严格定义, 我们应该使用 u_i 修正之前的值, 但是实际上差别微乎其微
        
        self.u, self.p = u, p
        self.trainset = trainset

    def estimate(self, i, j):
        '''预测 user i 对 item j 的评分.'''
        # 如果用户 i 和物品 j 是已知的值, 返回 u_i 和 p_j 的点积
        # 否则使用全局平均评分rating值(cold start 冷启动问题)
        if self.trainset.knows_user(i) and self.trainset.knows_item(j):
            return np.dot(self.u[i], self.p[j])
        else:
            return self.trainset.global_mean

2.2 基于上述矩阵分解实现电影推荐

from surprise import BaselineOnly
from surprise import Dataset
from surprise import Reader
from surprise import accuracy
from surprise.model_selection import cross_validate
from surprise.model_selection import train_test_split
import os

# 数据文件
file_path = os.path.expanduser('./ml-100k/u.data')
# - u.data文件包含了100,000条评分信息,每条记录的形式:user id | item id | rating | timestamp.(分隔符是一个tab)
# 数据文件的格式如下:
# 'user item rating timestamp', 使用制表符 '\t' 分割, rating值在1-5之间.
reader = Reader(line_format='user item rating timestamp', sep='\t', rating_scale=(1, 5))
data = Dataset.load_from_file(file_path, reader=reader)
# 查看文件内容
import pandas as pd
df = pd.read_csv("./ml-100k/u.data")
df.head()
196\t242\t3\t881250949
0186\t302\t3\t891717742
122\t377\t1\t878887116
2244\t51\t2\t880606923
3166\t346\t1\t886397596
4298\t474\t4\t884182806
df.shape
(99999, 1)

默认的SGD方法

# 将数据随机分为训练和测试数据集
trainset, testset = train_test_split(data, test_size=.25)

# 初始化以上定义的矩阵分解类.
algo = MatrixFactorization(learning_rate=.005, n_epochs=60, n_factors=2, lmd = 0.2)

# 训练
algo.fit(trainset)

# 预测
predictions = algo.test(testset)

# 计算平均绝对误差
accuracy.mae(predictions)
Fitting data with SGD...
MAE:  0.7818
0.7817791289983778

用 surpise 内建的基于最近邻的方法做比较

# 使用 surpise 内建的基于最近邻的方法做比较
algo = surprise.KNNBasic()
algo.fit(trainset)
predictions = algo.test(testset)
accuracy.mae(predictions)
Computing the msd similarity matrix...
Done computing similarity matrix.
MAE:  0.7725
0.7724598550399949

用 surpise 内建的基于 SVD 的方法做比较

# 使用 surpise 内建的基于 SVD 的方法做比较
algo = surprise.SVD()
algo.fit(trainset)
predictions = algo.test(testset)
accuracy.mae(predictions)
MAE:  0.7398
0.7397586022054631

如果文章对你有帮助,感谢点赞+关注!

关注下方GZH:阿旭算法与机器学习,回复:“电影推荐系统”即可获取本文数据集、源码与项目文档,欢迎共同学习交流

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/374703.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

什么牌子的蓝牙耳机便宜好用?四款高品质蓝牙耳机推荐

随着时代的发展,蓝牙耳机的使用频率越来越高,不少人外出时除了带手机外,蓝牙耳机也成为了外出必备的数码产品之一。现在的蓝牙耳机品牌众多,什么牌子的蓝牙耳机便宜好用?下面,我来给大家推荐四款高品质的蓝…

ZigBee组网原理详解

关键词:RFD FFD ZigBee 1. 组网概述 组建一个完整的zigbee网状网络包括两个步骤:网络初始化、节点加入网络。其中节点加入网络又包括两个步骤:通过与协调器连接入网和通过已有父节点入网。 ZigBee网络中的节点主要包含三个:终端…

一文3000字从0到1实现基于Selenium+Python的web自动化测试框架 (建议收藏)

一、什么是Selenium? Selenium是一个基于浏览器的自动化测试工具,它提供了一种跨平台、跨浏览器的端到端的web自动化解决方案。Selenium主要包括三部分:Selenium IDE、Selenium WebDriver 和Selenium Grid。 Selenium IDE:Firefo…

阿里云服务器宝塔phpstudyIIS建站

P1 建站准备工作 1.购买云服务器 (新用户登录阿里云有阿里云服务器一个月的试用权限,但是试用期的云服务器有地区限制(不可自己选择地区),我的显示的是杭州,内地的服务器进行域名绑定的话,需要…

香港新世代加密资产网红正在崛起

2023年,历经兴衰的加密资产,在元宇宙和NFT的影响下,越来越多人开始关注这个领域。而在香港,不同的人更是成为了加密资产网红,引起加密资产热度的提升。香港加密资产政策促进网红崛起随着加密资产在全球的兴起&#xff…

OPPO手机删除文件数据恢复技巧篇

由于各种原因,所有 Android 手机上的数据都可能丢失。Oppo也是一个专注于Android操作系统的智能手机品牌。因此,您的 Oppo 设备上的数据也容易被删除和损坏。在本文中,我们将讨论 Oppo 用户恢复丢失或删除数据的不同方式。我们将详细讲解OPPO…

原始GAN-pytorch-生成MNIST数据集(原理)

文章目录1. GAN 《Generative Adversarial Nets》1.1 相关概念1.2 公式理解1.3 图片理解1.4 熵、交叉熵、KL散度、JS散度1.5 其他相关(正在补充!)1. GAN 《Generative Adversarial Nets》 Ian J. Goodfellow, Jean Pouget-Abadie, Yoshua Be…

string类的理解以及模拟实现

string类的理解为什么需要学习string类标准库中的string类string类简单了解string类常见接口string模拟实现深浅拷贝问题标准库下的stringVS环境下g环境下为什么需要学习string类 在C语言中,字符串和字符串相关的函数是分开的,不太符合面向对象的思想&a…

在线视频加密播放与防下载该如何考虑?

在线视频加密播放与防下载该如何考虑? ▲ 图 / 防录屏随机水印 1. 视频加密(分片加密)VRM加密: 将视频进行切片、对碎片逐一进行混淆式加密,包括AES128加密、XOR加密、关键帧错序等。 2. 防录屏(用名信息I…

IM即时通讯开发如何解决大量离线消息导致客户端卡顿的

大部分做后端开发的朋友,都在开发接口。客户端或浏览器h5通过HTTP请求到我们后端的Controller接口,后端查数据库等返回JSON给客户端。大家都知道,HTTP协议有短连接、无状态、三次握手四次挥手等特点。而像游戏、实时通信等业务反而很不适合用…

一个Laravel+vue免费开源的基于RABC控制的博客系统

项目介绍 CCENOTE 是一个使用 Vue3 Laravel8 开发的前后端分离的基于RABC权限控制管理的内容管理系统,由于作者本人比较喜欢写作的原因,因此开发了这个项目,后端使用的PHP的Laravel框架,并且整理了数据层与业务层,相…

node环境搭建以及接口的封装

node环境搭建 文章目录node环境搭建1.在cmd中输入命令安装express(全局)2.在自己的项目下安装serve3.测试接口4.连接mysql4.1 创建数据表4.2 在serve目录下建db下的sql.js4.3 sql.js4.4 在serve路径下安装mysql4.5 在routes 中引入并发送请求4.6 请求到数…

一文3000字从0到1教你用python+selenium搭建UI自动化测试环境以及使用

一、什么是Selenium ? Selenium 是一个浏览器自动化测试框架,它主要用于web应用程序的自动化测试,其主要特点如下:开源、免费;多平台、浏览器、多语言支持;对web页面有良好的支持;API简单灵活易…

STM32CubeMX串口USART中断发送接收数据

本文代码使用 HAL 库。 文章目录前言一、中断控制二、USART中断使用1. 中断优先级设置 :2. 使能中断3. 使能UART的发送、接收中断4. 中断收发函数5. 中断处理函数6. 中断收发回调函数三、串口中断实验串口中断发送数据点亮 led:实验现象:总结…

excel图表制作:旋风图让数据对比更直观

旋风图是我们工作中最常用的数据对比图表。旋风图中两组图表背靠背,纵坐标同向,横坐标反向。今天我们就跟大家分享两种制作旋风图的方式。如下表所示,我们以某平台各主要城市的男女粉丝数据为例,制作旋风图来对比男女用户情况。一…

中级嵌入式系统设计师2016下半年下午应用设计试题

中级嵌入式系统设计师2016下半年下午试题 试题一 阅读以下说明,回答问题1至问题3。 【说明】 某综合化智能空气净化器设计以微处理器为核心,包含各种传感器和控制器,具有检测环境空气参数(包含温湿度、可燃气体、细颗粒物等),空气净化、加湿、除湿、加热和杀菌等功能…

7、算法MATLAB ---(运算符)(语句)

运算符&语句1.关系运算符2.逻辑运算符3. if...else 控制语句4. for循环5. While循环6.控制循环退出的关键字6.1 Break6.2 Continue6.3 Return1.关系运算符 ">"大于 ">"大于等于 "<"小于 "<"小于等于 ""等于…

【第六章 JdbcTemplate概念和准备,JdbcTemplate操作数据库(添加)】

第六章 JdbcTemplate概念和准备&#xff0c;JdbcTemplate操作数据库&#xff08;添加&#xff09; 1.JdbcTemplate&#xff08;概念和准备&#xff09; &#xff08;1&#xff09;spring框架对jdbc进行封装&#xff0c;使用JdbcTemplate方便实现对数据库操作。 &#xff08;2&…

数睿通2.0数据服务功能模块发布

文章目录引言API 目录API 权限API 日志结语引言 数睿通 2.0 之前基本完成了数据集成和数据开发两大模块&#xff0c;也因此得到了一些朋友的帮助和支持&#xff0c;在此由衷的表示感谢&#xff0c;你们的支持便是我们更新的最大动力&#xff01; 目前&#xff0c;数据服务模块…

10种聚类算法的完整python操作示例

大家好&#xff0c;聚类或聚类分析是无监督学习问题。它通常被用作数据分析技术&#xff0c;用于发现数据中的有趣模式&#xff0c;例如基于其行为的客户群。有许多聚类算法可供选择&#xff0c;对于所有情况&#xff0c;没有单一的最佳聚类算法。相反&#xff0c;最好探索一系…