10种聚类算法的完整python操作示例

news2024/11/6 7:25:30

大家好,聚类或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法。相反,最好探索一系列聚类算法以及每种算法的不同配置。在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。

看完本文后,你将知道:

  • 聚类是在输入数据的特征空间中查找自然组的无监督问题。

  • 对于所有数据集,有许多不同的聚类算法和单一的最佳方法。

  • 在 scikit-learn 机器学习库的 Python 中如何实现、适配和使用顶级聚类算法。

一、聚类

聚类分析,即聚类,是一项无监督的机器学习任务。它包括自动发现数据中的自然分组。与监督学习(类似预测建模)不同,聚类算法只解释输入数据,并在特征空间中找到自然组或群集。

群集通常是特征空间中的密度区域,其中来自域的示例(观测或数据行)比其他群集更接近群集。群集可以具有作为样本或点特征空间的中心(质心),并且可以具有边界或范围。

聚类还可用作特征工程的类型,其中现有的和新的示例可被映射并标记为属于数据中所标识的群集之一。虽然确实存在许多特定于群集的定量措施,但是对所识别的群集的评估是主观的,并且可能需要领域专家。通常,聚类算法在人工合成数据集上与预先定义的群集进行学术比较,预计算法会发现这些群集。

二、聚类算法

有许多类型的聚类算法。许多算法在特征空间中的示例之间使用相似度或距离度量,以发现密集的观测区域。因此,在使用聚类算法之前,扩展数据通常是良好的实践。

一些聚类算法要求您指定或猜测数据中要发现的群集的数量,而另一些算法要求指定观测之间的最小距离,其中示例可以被视为“关闭”或“连接”。因此,聚类分析是一个迭代过程,在该过程中,对所识别的群集的主观评估被反馈回算法配置的改变中,直到达到期望的或适当的结果。scikit-learn 库提供了一套不同的聚类算法供选择。下面列出了10种比较流行的算法:

  1. 亲和力传播

  1. 聚合聚类

  1. BIRCH

  1. DBSCAN

  1. K-均值

  1. Mini-Batch K-均值

  1. Mean Shift

  1. OPTICS

  1. 光谱聚类

  1. 高斯混合

每个算法都提供了一种不同的方法来应对数据中发现自然组的挑战。没有最好的聚类算法,也没有简单的方法来找到最好的算法为您的数据没有使用控制实验。在本教程中,我们将回顾如何使用来自 scikit-learn 库的这10个流行的聚类算法中的每一个。这些示例将为您复制粘贴示例并在自己的数据上测试方法提供基础。我们不会深入研究算法如何工作的理论,也不会直接比较它们。让我们深入研究一下。

三、聚类算法示例

现在我们将讲一下如何在 scikit-learn 中使用10个流行的聚类算法。这包括一个拟合模型的例子和可视化结果的例子。这些示例用于将粘贴复制到您自己的项目中,并将方法应用于您自己的数据。

首先,让我们安装库。不要跳过此步骤,因为你需要确保安装了最新版本。你可以使用 pip Python 安装程序安装 scikit-learn 存储库,如下所示:

pip install scikit-learn

接下来,让我们确认已经安装了库,并且您正在使用一个现代版本。运行以下脚本以输出库版本号。

# 检查 scikit-learn 版本
import sklearn
print(sklearn.__version__)

我们将使用 make _ classification ()函数创建一个测试二分类数据集。数据集将有1000个示例,每个类有两个输入要素和一个群集。这些群集在两个维度上是可见的,因此我们可以用散点图绘制数据,并通过指定的群集对图中的点进行颜色绘制。

这将有助于了解,至少在测试问题上,群集的识别能力如何。该测试问题中的群集基于多变量高斯,并非所有聚类算法都能有效地识别这些类型的群集。因此,本教程中的结果不应用作比较一般方法的基础。下面列出了创建和汇总合成聚类数据集的示例。

# 综合分类数据集
from numpy import where
from sklearn.datasets import make_classification
from matplotlib import pyplot
# 定义数据集
X, y = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=4)
# 为每个类的样本创建散点图
for class_value in range(2):
# 获取此类的示例的行索引
row_ix = where(y == class_value)
# 创建这些样本的散布
pyplot.scatter(X[row_ix, 0], X[row_ix, 1])
# 绘制散点图
pyplot.show()

运行该示例将创建合成的聚类数据集,然后创建输入数据的散点图,其中点由类标签(理想化的群集)着色。我们可以清楚地看到两个不同的数据组在两个维度,并希望一个自动的聚类算法可以检测这些分组。

接下来,我们可以开始查看应用于此数据集的聚类算法的示例。我已经做了一些最小的尝试来调整每个方法到数据集。

1.亲和力传播

亲和力传播包括找到一组最能概括数据的范例。它是通过 AffinityPropagation 类实现的,要调整的主要配置是将“ 阻尼 ”设置为0.5到1,甚至可能是“首选项”。

下面列出了完整的示例:

# 亲和力传播聚类
from numpy import unique
from numpy import where
from sklearn.datasets import make_classification
from sklearn.cluster import AffinityPropagation
from matplotlib import pyplot
# 定义数据集
X, _ = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=4)
# 定义模型
model = AffinityPropagation(damping=0.9)
# 匹配模型
model.fit(X)
# 为每个示例分配一个集群
yhat = model.predict(X)
# 检索唯一群集
clusters = unique(yhat)
# 为每个群集的样本创建散点图
for cluster in clusters:
# 获取此群集的示例的行索引
row_ix = where(yhat == cluster)
# 创建这些样本的散布
pyplot.scatter(X[row_ix, 0], X[row_ix, 1])
# 绘制散点图
pyplot.show()

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法取得良好的结果。

2.聚合聚类

聚合聚类涉及合并示例,直到达到所需的群集数量为止。它是层次聚类方法的更广泛类的一部分,通过 AgglomerationClustering 类实现的,主要配置是“ n _ clusters ”集,这是对数据中的群集数量的估计。下面列出了完整的示例:

# 聚合聚类
from numpy import unique
from numpy import where
from sklearn.datasets import make_classification
from sklearn.cluster import AgglomerativeClustering
from matplotlib import pyplot
# 定义数据集
X, _ = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=4)
# 定义模型
model = AgglomerativeClustering(n_clusters=2)
# 模型拟合与聚类预测
yhat = model.fit_predict(X)
# 检索唯一群集
clusters = unique(yhat)
# 为每个群集的样本创建散点图
for cluster in clusters:
# 获取此群集的示例的行索引
row_ix = where(yhat == cluster)
# 创建这些样本的散布
pyplot.scatter(X[row_ix, 0], X[row_ix, 1])
# 绘制散点图
pyplot.show()

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组。

3.BIRCH

BIRCH 聚类( BIRCH 是平衡迭代减少的缩写,聚类使用层次结构)包括构造一个树状结构,从中提取聚类质心。它是通过 Birch 类实现的,主要配置是“ threshold ”和“ n _ clusters ”超参数,后者提供了群集数量的估计。下面列出了完整的示例:

# birch聚类
from numpy import unique
from numpy import where
from sklearn.datasets import make_classification
from sklearn.cluster import Birch
from matplotlib import pyplot
# 定义数据集
X, _ = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=4)
# 定义模型
model = Birch(threshold=0.01, n_clusters=2)
# 适配模型
model.fit(X)
# 为每个示例分配一个集群
yhat = model.predict(X)
# 检索唯一群集
clusters = unique(yhat)
# 为每个群集的样本创建散点图
for cluster in clusters:
# 获取此群集的示例的行索引
row_ix = where(yhat == cluster)
# 创建这些样本的散布
pyplot.scatter(X[row_ix, 0], X[row_ix, 1])
# 绘制散点图
pyplot.show()

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个很好的分组。

4.DBSCAN

DBSCAN 聚类(其中 DBSCAN 是基于密度的空间聚类的噪声应用程序)涉及在域中寻找高密度区域,并将其周围的特征空间区域扩展为群集。它是通过 DBSCAN 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。

下面列出了完整的示例:

# dbscan 聚类
from numpy import unique
from numpy import where
from sklearn.datasets import make_classification
from sklearn.cluster import DBSCAN
from matplotlib import pyplot
# 定义数据集
X, _ = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=4)
# 定义模型
model = DBSCAN(eps=0.30, min_samples=9)
# 模型拟合与聚类预测
yhat = model.fit_predict(X)
# 检索唯一群集
clusters = unique(yhat)
# 为每个群集的样本创建散点图
for cluster in clusters:
# 获取此群集的示例的行索引
row_ix = where(yhat == cluster)
# 创建这些样本的散布
pyplot.scatter(X[row_ix, 0], X[row_ix, 1])
# 绘制散点图
pyplot.show()

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,尽管需要更多的调整,但是找到了合理的分组。

5.K均值

K-均值聚类可以是最常见的聚类算法,并涉及向群集分配示例,以尽量减少每个群集内的方差。它是通过 K-均值类实现的,要优化的主要配置是“ n _ clusters ”超参数设置为数据中估计的群集数量。下面列出了完整的示例:

# k-means 聚类
from numpy import unique
from numpy import where
from sklearn.datasets import make_classification
from sklearn.cluster import KMeans
from matplotlib import pyplot
# 定义数据集
X, _ = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=4)
# 定义模型
model = KMeans(n_clusters=2)
# 模型拟合
model.fit(X)
# 为每个示例分配一个集群
yhat = model.predict(X)
# 检索唯一群集
clusters = unique(yhat)
# 为每个群集的样本创建散点图
for cluster in clusters:
# 获取此群集的示例的行索引
row_ix = where(yhat == cluster)
# 创建这些样本的散布
pyplot.scatter(X[row_ix, 0], X[row_ix, 1])
# 绘制散点图
pyplot.show()

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组,尽管每个维度中的不等等方差使得该方法不太适合该数据集。

6.Mini-Batch K-均值

Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的样本而不是整个数据集对群集质心进行更新,这可以使大数据集的更新速度更快,并且可能对统计噪声更健壮。它是通过 MiniBatchKMeans 类实现的,要优化的主配置是“ n _ clusters ”超参数,设置为数据中估计的群集数量。下面列出了完整的示例:

# mini-batch k均值聚类
from numpy import unique
from numpy import where
from sklearn.datasets import make_classification
from sklearn.cluster import MiniBatchKMeans
from matplotlib import pyplot
# 定义数据集
X, _ = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=4)
# 定义模型
model = MiniBatchKMeans(n_clusters=2)
# 模型拟合
model.fit(X)
# 为每个示例分配一个集群
yhat = model.predict(X)
# 检索唯一群集
clusters = unique(yhat)
# 为每个群集的样本创建散点图
for cluster in clusters:
# 获取此群集的示例的行索引
row_ix = where(yhat == cluster)
# 创建这些样本的散布
pyplot.scatter(X[row_ix, 0], X[row_ix, 1])
# 绘制散点图
pyplot.show()

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,会找到与标准 K-均值算法相当的结果。

7.均值漂移聚类

均值漂移聚类涉及到根据特征空间中的实例密度来寻找和调整质心。它是通过 MeanShift 类实现的,主要配置是“带宽”超参数。下面列出了完整的示例:

# 均值漂移聚类
from numpy import unique
from numpy import where
from sklearn.datasets import make_classification
from sklearn.cluster import MeanShift
from matplotlib import pyplot
# 定义数据集
X, _ = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=4)
# 定义模型
model = MeanShift()
# 模型拟合与聚类预测
yhat = model.fit_predict(X)
# 检索唯一群集
clusters = unique(yhat)
# 为每个群集的样本创建散点图
for cluster in clusters:
# 获取此群集的示例的行索引
row_ix = where(yhat == cluster)
# 创建这些样本的散布
pyplot.scatter(X[row_ix, 0], X[row_ix, 1])
# 绘制散点图
pyplot.show()

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以在数据中找到一组合理的群集。

8.OPTICS

OPTICS 聚类( OPTICS 短于订购点数以标识聚类结构)是上述 DBSCAN 的修改版本。它是通过 OPTICS 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。

下面列出了完整的示例:

# optics聚类
from numpy import unique
from numpy import where
from sklearn.datasets import make_classification
from sklearn.cluster import OPTICS
from matplotlib import pyplot
# 定义数据集
X, _ = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=4)
# 定义模型
model = OPTICS(eps=0.8, min_samples=10)
# 模型拟合与聚类预测
yhat = model.fit_predict(X)
# 检索唯一群集
clusters = unique(yhat)
# 为每个群集的样本创建散点图
for cluster in clusters:
# 获取此群集的示例的行索引
row_ix = where(yhat == cluster)
# 创建这些样本的散布
pyplot.scatter(X[row_ix, 0], X[row_ix, 1])
# 绘制散点图
pyplot.show()

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法在此数据集上获得合理的结果。

9.光谱聚类

光谱聚类是一类通用的聚类方法,取自线性线性代数。它是通过 Spectral 聚类类实现的,而主要的 Spectral 聚类是一个由聚类方法组成的通用类,取自线性线性代数。要优化的是“ n _ clusters ”超参数,用于指定数据中的估计群集数量。下面列出了完整的示例:

# spectral clustering
from numpy import unique
from numpy import where
from sklearn.datasets import make_classification
from sklearn.cluster import SpectralClustering
from matplotlib import pyplot
# 定义数据集
X, _ = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=4)
# 定义模型
model = SpectralClustering(n_clusters=2)
# 模型拟合与聚类预测
yhat = model.fit_predict(X)
# 检索唯一群集
clusters = unique(yhat)
# 为每个群集的样本创建散点图
for cluster in clusters:
# 获取此群集的示例的行索引
row_ix = where(yhat == cluster)
# 创建这些样本的散布
pyplot.scatter(X[row_ix, 0], X[row_ix, 1])
# 绘制散点图
pyplot.show()

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,找到了合理的集群。

10.高斯混合模型

高斯混合模型总结了一个多变量概率密度函数,顾名思义就是混合了高斯概率分布。它是通过 Gaussian Mixture 类实现的,要优化的主要配置是“ n _ clusters ”超参数,用于指定数据中估计的群集数量。下面列出了完整的示例:

# 高斯混合模型
from numpy import unique
from numpy import where
from sklearn.datasets import make_classification
from sklearn.mixture import GaussianMixture
from matplotlib import pyplot
# 定义数据集
X, _ = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=4)
# 定义模型
model = GaussianMixture(n_components=2)
# 模型拟合
model.fit(X)
# 为每个示例分配一个集群
yhat = model.predict(X)
# 检索唯一群集
clusters = unique(yhat)
# 为每个群集的样本创建散点图
for cluster in clusters:
# 获取此群集的示例的行索引
row_ix = where(yhat == cluster)
# 创建这些样本的散布
pyplot.scatter(X[row_ix, 0], X[row_ix, 1])
# 绘制散点图
pyplot.show()

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我们可以看到群集被完美地识别。这并不奇怪,因为数据集是作为 Gaussian 的混合生成的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/374672.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【内网安全】——Linux权限维持

作者名:白昼安全主页面链接: 主页传送门创作初心: 以后赚大钱座右铭: 不要让时代的悲哀成为你的悲哀专研方向: web安全,后渗透技术每日鸡汤: 钱至少对于现在的我来说,的确是万能的在…

04 方法与函数

Scala 中的也有方法和函数的概念。 Scala中的 方法 是类的一部分。 Scala中的 函数 是一个对象,可以赋值给变量。 在类中定义的函数就是方法 4.1 方法 Scala 中方法 与 Java 中类似,是组成类的一部分 4.1.1 语法结构 格式: def 方法名([参…

程序员是否要加入创业公司?

我从1月份入职到2月份离职,历时一个半月。短暂的体验了一段创业生活,更准确的说是一段“待在”创业团队的生活,因为我发现创业本身跟我关系不大。一个半月的就业经历,对任何人来说都不是一个好选择,当然也不是我所期望…

[oeasy]python0094_视频游戏_双人网球_pong_atari_mos_6502_雅达利_米洛华

编码进化 回忆上次内容 上次 我们回顾了 微软之前的 比尔盖茨和保罗艾伦 mits 迎来的 是帮手还是隐患? intel-8080 遇到了 mos-6502 底层硬件 驱动 游戏行业进化 不光是扑克牌和柏青哥了出现了双人网球 不过 目前的游戏 PDP-1 上的《太空大战》Donner Model 30 上…

K8S---pod基础概念

目录 一、资源限制 二、Pod 的两种使用方式 三、Pod 资源共享 四、底层容器Pause 1、Pause共享资源 1.1 网络 1.2 存储 1.3 小结 2、Pause主要功能 3、Pod 与 Pause 结构的设计初衷 五、Pod容器的分类 1、基础容器(infrastructure container)…

C++ Primer Plus 第6版 读书笔记(2)第2章 开始学习 C++

C是在 C 语言基础上开发的一种集面向对象编程、泛型编程和过程化编程于一体的编程语言,是C语言的超集。本书是根据2003年的ISO/ANSI C标准编写的,通过大量短小精悍的程序详细而全面地阐述了 C的基本概念和技术,并专辟一章介绍了C11新增的功能…

企业网站自动生成系统的设计和实现

技术:Java、JSP等摘要:随着Internet技术的发展,人们的日常生活已经离不开网络。未来社会人们的生活和工作将越来越依赖于数字技术的发展,越来越数字化、网络化、电子化、虚拟化。Internet的发展历程以及目前的应用状况和发展趋势&…

BigGAN

1、BIGGAN 解读1.1、作者 Andrew Brock、Jeff Donahue、Karen Simonyan 1.2、摘要 尽管最近在生成图像建模方面取得了进展,但从 ImageNet 等复杂数据集中 成功生成高分辨率、多样化的样本仍然是一个难以实现的目标。为此,我们以迄 今为止最大的规模训练生…

使用MUI与H5+构建移动端app

前言 通过mui构建APP 效果图: <!DOCTYPE html> <html> <head><meta charset

c语言指针(结构体)

*结构体&#xff1a;-箭头&#xff08;->&#xff09;&#xff1a;左边必须为指针&#xff1b;-点号&#xff08;.&#xff09;&#xff1a;左边必须为实体。*函数传数组用指针传递&#xff1a;-传的是第一个的元素的指针-也就是说在函数里&#xff0c;形参只是一个指针&…

Delphi 中 FireDAC 数据库连接(总览)

本系列包含一组文章&#xff0c;描述了如何用在Delphi中使用FireDAC设置数据库驱动和管理数据库连接。通过这一些列文章的学习&#xff0c;将熟练掌握FireDAC数据库连接管理应用。自由使用FireDAC&#xff01;主题说明定义连接描述了如何存储和使用FireDAC连接参数以及连接定义…

sqlserver 数据库优化工具,安全性设置,并发设置,SQL耗时优化

当前数据库版本查询&#xff0c;硬件资源最大限度决定当前数据库实例的性能.数据库并发设置&#xff0c;理论最大连接数&#xff0c;当前实例数据库实例设置的最大连接数&#xff0c;决定高并发的连接数数据库连接字符串优化&#xff0c;是否复用&#xff0c;生命周期&#xff…

英语学术写作作业文章分析1

Abstract:a concise overview of the study研究简明概述 Introduction&#xff1a;1.providing the background 提供研究背景 2.indentifying the problem under study 了解正在研究的问题 3.evaluating previous studies评估之前的研究 4.identifying the research gap认识研…

GAIDC 2023盛会迎来大模型论坛“主场”,百度飞桨护航大模型产业发展

‍‍‍‍2月25日-26日&#xff0c;2023全球人工智能开发者先锋大会&#xff08;GAIDC&#xff09;在上海临港举行&#xff0c;大会以“向光而行的AI开发者”为主题&#xff0c;汇聚了当前科技和产业革命中的开发者先锋力量。百度深度参与本次大会&#xff0c;飞桨联合上海市人工…

-source1.5中不支持diamond运算符终极解决办法

1. 常规办法 在File->Setting中设置如下&#xff1a; 然后检查&#xff1a;File->Project Structure里面的相关配置&#xff1a; 以上办法能解决问题的概率在90%&#xff0c;如果还不行&#xff0c;那么请按照以下方法&#xff0c;基本上100%可以解决。 如果还没解决则…

前端基础之CSS扫盲

文章目录一. CSS基本规范1. 基本语法格式2. 在HTML引入CSS3. 选择器分类二. CSS常用属性1. 文本属性2. 文本格式3. 背景属性4. 圆角矩形和圆5. 元素的显示模式6. CSS盒子模型7. 弹性布局光使用HTML来写一个前端页面的话其实只是写了一个大体的框架, 整体的页面并不工整美观, 而…

01 导入已有环境配置(上课使用)

一、导入虚拟机 通过 VMware 打开已经安装好的 集群 打开三个 将导入的虚拟机打开 第一次打开会需要选择方式 “我已移动虚拟机” 不会改变原虚拟机的配置 “我已复制虚拟机” 会去改变虚拟机mac地址&#xff0c;需要重新的去配置 mac 地址 选择 未列出 &#xff0c;以 root…

Matlab论文插图绘制模板第79期—无线条等高线填充图

资源群里有朋友问如何绘制等高线填充图&#xff0c;但删除线条&#xff0c;只保留填充颜色的那种。 那么&#xff0c;本期就来分享一下无线条等高线填充图的绘制模板。 先来看一下成品效果&#xff1a; 特别提示&#xff1a;Matlab论文插图绘制模板系列&#xff0c;旨在降低大…

【C语言进阶】指针与数组、转移表详解

前言 大家好我是程序猿爱打拳&#xff0c;我们在学习完指针的基本概念后知道了指针就是地址&#xff0c;我们可以通过这个地址并对它进行解引用从而改变一些数据。但只学习指针的基础是完全不够的&#xff0c;因此学习完指针的基础后我们可以学习关于指针的进阶&#xff0c;其中…

WireShark如何进行USB包协议分析

USB协议学习的步骤之一就是从抓包看协议通信,进而学习usb设备开发是怎么回事。这里发现一个工具就是wireshark。 WireShark如果要抓取usb设备的包,需要在安装的时候,选择usbpcap一并进行安装。